Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "valuvuustutkimus"

Sort by: Order: Results:

  • Kontola, Sandra (2018)
    Flowability is an important powder character and, despite decades of research, there are still issues in finding a suitable measurement method. Common challenges are sample size and methodology’s suitability for cohesive powders due to their ability to form vault structures. Powder flowability properties depend strongly on particle features such as size and shape. As particles are in contact with other particles and materials, they receive electric charge and form bonds. In addition to these variables, the gravity and shear stress affect the powder. A combination of all these determine the powder properties such as flowability. Besides the particle properties, process and preservation conditions and especially humidity affects the powder properties significantly. Hence, the powder’s flow behavior varies in different conditions. There are several measurement devices available but none of them is able to yield intrinsic values. Reliability of the measurements presents another challenge as the measured values cannot be directly compared with published literature. Moreover, the flow measurement of cohesive powders is either impossible or extremely difficult with the devices currently available and the sample size needs to be sufficient. Hence, there is a need for new devices, which measure powder flow easily in small-scale. Small sample size is important especially when developing new, expensive drugs since their properties need to be explored in order to develop a new formulation. The aim of the empirical study was to develop a device, which measures particularly the flowability of cohesive powders in small-scale. A ground for the study was a device developed at University of Helsinki, which measures powder flowability by utilizing horizontal movement. In addition, the device breaks the problematic vault formation of cohesive powders by jolts. In the study a cuvette, which utilizes the horizontal movement and measures the powder flow, was developed. Flowability tests were run with five powders – Acetaminophen, Pharmatose 80M, Pharmatose 200M, Emcompress®, Avicel PH-101, Avicel PH-102, Avicel PH-200 and Maize Starch. The results were promising and the device was capable of classifying the powders by their flowabilities but more research is still needed.