Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "viiveellä ilmaantuva vaurio"

Sort by: Order: Results:

  • Pöyhönen, Suvi (2017)
    Cortical stroke induces a chain of events that results in secondary injury in the ipsilateral thalamus. Inflammation is a key player in the delayed injury. Microglia, the resident innate immune cells of the brain, seem to have an important role in the initiation and maintenance of the inflammation. After infarct they are rapidly activated and start to proliferate and release proinflammatory cytokines. They may even phagocytose viable neurons, a phenomenon called "phagoptosis". Many studies, which have aimed at inhibition of the the detrimental function of microglia, suggest that inhibition of microglia might offer promising therapeutical targets. However, microglia are also involved in the resolution and the repair phase after infarct, which makes development of novel therapies challenging. The only approved treatment for ischemic stroke, a fibrinolytic agent, has a very narrow therapeutic time window. Thus, new treatments are urgently needed. Modulation of inflammation may offer a wider therapeutic time window. In this study, we investigated the effects of two potentially neurotrophic factors, CDNF (cerebral dopamine neurotrophic factor) and MANF (mesencephalic astrocyte-derived neurotrophic factor), as well as a specific vitronectin receptor blocker, cRGDfV, on the prevention of neuronal death in thalamus in a transient murine cortical stroke model. MANF and CDNF are proteins released during stress of the endoplasmic reticulum (ER). They have been shown to protect neurons during ER stress and to reduce the production of some proinflammatory mediators. The vitronectin receptor blocker has in vitro inhibited microglial phagoptosis. The treatments were administered as single injections to the thalamus 7 days after the stroke onset. CDNF and MANF alleviated functional deficits, but did not protect thalamic neurons from death or affect the accumulation of phagocytic microglia. cRGDfV neither enhanced functional outcome nor protected neurons from death. The mechanisms of action were not investigated. In addition, we investigated, whether the death of thalamic neurons in the cortical stroke results in sensitization to pain. Central post-stroke pain has been reported on stroke patients and it has been associated with the death or the disturbances in the function of thalamic neurons. However, in spite of significant reduction in the number of neurons in the ipsilateral thalamus and the increase in the accumulation of phagocytic microglia on day 30 after stroke, we did not observe any significant sensitization to pain caused by thermal or mechanical stimuli on days 3, 14 and 28 after stroke. In conclusion, transient ischemic cortical stroke doesn't seem to induce sensitization to pain. MANF and CDNF seem to alleviate functional deficiencies, but they do not protect thalamic neurons from delayed death.