Skip to main content
Login | Suomeksi | På svenska | In English

Smolyak Quadrature

Show simple item record

dc.date.accessioned 2013-08-07T08:57:51Z und
dc.date.accessioned 2017-10-24T12:22:25Z
dc.date.available 2013-08-07T08:57:51Z und
dc.date.available 2017-10-24T12:22:25Z
dc.date.issued 2013-08-07T08:57:51Z
dc.identifier.uri http://radr.hulib.helsinki.fi/handle/10138.1/3032 und
dc.identifier.uri http://hdl.handle.net/10138.1/3032
dc.title Smolyak Quadrature en
ethesis.discipline Applied Mathematics en
ethesis.discipline Soveltava matematiikka fi
ethesis.discipline Tillämpad matematik sv
ethesis.discipline.URI http://data.hulib.helsinki.fi/id/2646f59d-c072-44e7-b1c1-4e4b8b798323
ethesis.department.URI http://data.hulib.helsinki.fi/id/61364eb4-647a-40e2-8539-11c5c0af8dc2
ethesis.department Institutionen för matematik och statistik sv
ethesis.department Department of Mathematics and Statistics en
ethesis.department Matematiikan ja tilastotieteen laitos fi
ethesis.faculty Matematisk-naturvetenskapliga fakulteten sv
ethesis.faculty Matemaattis-luonnontieteellinen tiedekunta fi
ethesis.faculty Faculty of Science en
ethesis.faculty.URI http://data.hulib.helsinki.fi/id/8d59209f-6614-4edd-9744-1ebdaf1d13ca
ethesis.university.URI http://data.hulib.helsinki.fi/id/50ae46d8-7ba9-4821-877c-c994c78b0d97
ethesis.university Helsingfors universitet sv
ethesis.university University of Helsinki en
ethesis.university Helsingin yliopisto fi
dct.creator Kaarnioja, Vesa
dct.issued 2013
dct.language.ISO639-2 eng
dct.abstract This thesis is an introduction to the theoretical foundation and practical usage of the Smolyak quadrature rule, which is used to evaluate high-dimensional integrals over regions of Euclidean spaces. Given a sequence of univariate quadrature rules, the Smolyak construction is defined in terms of tensor products taken over the univariate rules' consecutive differences. The evaluation points of the resulting multivariate quadrature rule are distributed more sparsely than those of e.g. tensor product quadrature. It can be shown that a multivariate quadrature rule formulated in this way inherits many useful properties of the underlying sequence of univariate quadrature rules, such as the polynomial exactness. The original formulation of the Smolyak rule is prone to a copious amount of cancellation of terms in practice. This issue can be circumvented by isolating the occurrence of duplicates to a separate term, which can be computed a priori. The resulting combination method forms the basis for a numerical implementation of the Smolyak quadrature rule, which we have provided using the MATLAB scripting language. Our tests suggest that the Smolyak rule provides a competitive alternative in the realm of multidimensional integration routines saturated by the stochastic Monte Carlo method and the deterministic Quasi-Monte Carlo method. This statement is especially valid in the case of smooth integrands and it is backed by the error analysis developed in the second chapter of this thesis. The classical convergence rate is also derived for integrands of sufficient smoothness in the case of a bounded integration region. The third chapter serves as a qualitative approach to generalized sparse grid quadrature. Especially of interest is the dimension-adaptive construction. While it lacks the theoretical foundation of the Smolyak quadrature rule, it has the added benefit of adapting to the spatial structure of the integrand. A MATLAB implementation of this routine is presented vis-à-vis the Smolyak quadrature rule. en
dct.language en
ethesis.language.URI http://data.hulib.helsinki.fi/id/languages/eng
ethesis.language English en
ethesis.language englanti fi
ethesis.language engelska sv
ethesis.thesistype pro gradu-avhandlingar sv
ethesis.thesistype pro gradu -tutkielmat fi
ethesis.thesistype master's thesis en
ethesis.thesistype.URI http://data.hulib.helsinki.fi/id/thesistypes/mastersthesis
dct.identifier.urn URN:NBN:fi-fe2017112252091
dc.type.dcmitype Text

Files in this item

Files Size Format View
thesis.pdf 952.4Kb PDF

This item appears in the following Collection(s)

Show simple item record