Skip to main content
Login | Suomeksi | På svenska | In English

Novel approaches to computationally predict contacts between amino acids in protein native states

Show simple item record

dc.date.accessioned 2013-09-30T09:52:23Z und
dc.date.accessioned 2017-10-24T12:04:39Z
dc.date.available 2013-09-30T09:52:23Z und
dc.date.available 2017-10-24T12:04:39Z
dc.date.issued 2013-09-30T09:52:23Z
dc.identifier.uri http://radr.hulib.helsinki.fi/handle/10138.1/3097 und
dc.identifier.uri http://hdl.handle.net/10138.1/3097
dc.title Novel approaches to computationally predict contacts between amino acids in protein native states en
ethesis.discipline Theoretical Physics en
ethesis.discipline Teoreettinen fysiikka fi
ethesis.discipline Teoretisk fysik sv
ethesis.discipline.URI http://data.hulib.helsinki.fi/id/C29de80f-21cd-424a-b706-b564d642b058
ethesis.department.URI http://data.hulib.helsinki.fi/id/3acb09b1-e6a2-4faa-b677-1a1b03285b66
ethesis.department Institutionen för fysik sv
ethesis.department Department of Physics en
ethesis.department Fysiikan laitos fi
ethesis.faculty Matematisk-naturvetenskapliga fakulteten sv
ethesis.faculty Matemaattis-luonnontieteellinen tiedekunta fi
ethesis.faculty Faculty of Science en
ethesis.faculty.URI http://data.hulib.helsinki.fi/id/8d59209f-6614-4edd-9744-1ebdaf1d13ca
ethesis.university.URI http://data.hulib.helsinki.fi/id/50ae46d8-7ba9-4821-877c-c994c78b0d97
ethesis.university Helsingfors universitet sv
ethesis.university University of Helsinki en
ethesis.university Helsingin yliopisto fi
dct.creator Hartonen, Tuomo
dct.issued 2013
dct.language.ISO639-2 eng
dct.abstract Ability to deduce three-dimensional structure of a protein from its one-dimensional amino acid chain is a long-standing challenge in structural biology. Accurate structure prediction has enormous application potential in e.g. drug development and design of novel enzymes. In past this problem has been studied experimentally (X-ray crystallography, nuclear magnetic resonance imaging) and computationally by simulating molecular dynamics of protein folding. However, the latter requires enormous computing resources and the former is expensive and time-consuming. Direct contact analysis (DCA) is an inference method relying on direct correlations measured from multiple sequence alignments (MSA) of protein families to predict contacts between amino acids in the three-dimensional structure of a protein. It solves the 21-state inverse Potts problem of statistical physics, i.e. given the correlations, what are the interactions between the amino acids of a protein. The current state of the art in the DCA approach is the plmDCA-algorithm relying on pseudolikelihood maximization. In this study the performance of the parallelised asymmetric plmDCA-algorithm is tested on a diverse set of more than 100 protein families. It is seen that generally for MSA's with more than approximately 2000 sequences plmDCA is able to predict more than half of the 100 top-scoring contacts correctly with the prediction accuracy increasing almost linearly as a function of the number of sequences. Parallelisation of plmDCA is also observed to make the algorithm tens of times (depending on the number of CPU cores used) faster than the previously described serial plmDCA. Extensions to Potts model taking into account the differences in distributions of gaps and amino acids in MSA's are investigated. An extension incorporating the position-dependant frequencies of gaps of length one to Potts model is found to increase the prediction accuracy for short sequences. Further and more extensive studies are however needed to discover the full potential of this approach. en
dct.language en
ethesis.language.URI http://data.hulib.helsinki.fi/id/languages/eng
ethesis.language English en
ethesis.language englanti fi
ethesis.language engelska sv
ethesis.thesistype pro gradu-avhandlingar sv
ethesis.thesistype pro gradu -tutkielmat fi
ethesis.thesistype master's thesis en
ethesis.thesistype.URI http://data.hulib.helsinki.fi/id/thesistypes/mastersthesis
dct.identifier.urn URN:NBN:fi-fe2017112251993
dc.type.dcmitype Text

Files in this item

Files Size Format View
hartonen_tuomo_pro_gradu_150913.pdf 1.679Mb PDF

This item appears in the following Collection(s)

Show simple item record