Skip to main content
Login | Suomeksi | På svenska | In English

Ääriarvojakaumat ja soveltaminen osakemarkkinadataan

Show simple item record

dc.date.accessioned 2014-07-31T07:19:03Z und
dc.date.accessioned 2017-10-24T12:21:29Z
dc.date.available 2014-07-31T07:19:03Z und
dc.date.available 2017-10-24T12:21:29Z
dc.date.issued 2014-07-31T07:19:03Z
dc.identifier.uri http://radr.hulib.helsinki.fi/handle/10138.1/4116 und
dc.identifier.uri http://hdl.handle.net/10138.1/4116
dc.title Ääriarvojakaumat ja soveltaminen osakemarkkinadataan fi
ethesis.discipline Applied Mathematics en
ethesis.discipline Soveltava matematiikka fi
ethesis.discipline Tillämpad matematik sv
ethesis.discipline.URI http://data.hulib.helsinki.fi/id/2646f59d-c072-44e7-b1c1-4e4b8b798323
ethesis.department.URI http://data.hulib.helsinki.fi/id/61364eb4-647a-40e2-8539-11c5c0af8dc2
ethesis.department Institutionen för matematik och statistik sv
ethesis.department Department of Mathematics and Statistics en
ethesis.department Matematiikan ja tilastotieteen laitos fi
ethesis.faculty Matematisk-naturvetenskapliga fakulteten sv
ethesis.faculty Matemaattis-luonnontieteellinen tiedekunta fi
ethesis.faculty Faculty of Science en
ethesis.faculty.URI http://data.hulib.helsinki.fi/id/8d59209f-6614-4edd-9744-1ebdaf1d13ca
ethesis.university.URI http://data.hulib.helsinki.fi/id/50ae46d8-7ba9-4821-877c-c994c78b0d97
ethesis.university Helsingfors universitet sv
ethesis.university University of Helsinki en
ethesis.university Helsingin yliopisto fi
dct.creator Parvio, Matti
dct.issued 2014
dct.language.ISO639-2 fin
dct.abstract Työssä tarkastellaan ääriarvoteorian perusteiden pohjalta kahta tunnettua ääriarvojakaumaa ja niiden antamia häntätodennäköisyyksiä havaintoaineistolle, joka esittää osaketuottojen kuukausitappioita. Lukijalla oletetaan olevan hallussa todennäköisyysteorian -ja laskennan perustiedot. Ääriarvoteoriassa ollaan kiinnostuneita jonkin havaintoaineiston otosmaksimien käyttäytymisestä sekä niiden jakaumasta. Kiinnostuksen kohteena on siis harvoin sattuvien tapahtumien todennäköisyydet eli havaintojen häntätodennäköisyydet ja tarkoitus on analysoida tiettyyn hetkeen mennessä havaittuja tapahtumia suurempien tapahtumien todennäköisyyksiä. Tutkielman alussa käydään lävitse ääriarvoteorian muutamia olennaisia tuloksia. Käsiteltävä teoria on nimenomaan klassista ääriarvoteoriaa, jossa havaintojen oletetaan olevan riippumattomia ja samoin jakautuneita. Olennainen tulos ääriarvoteoriassa on se, että mikäli sopivilla vakioilla normeerattu otosmaksimi suppenee jakaumaltaan kohti jotain ei-degeneroitunutta jakaumaa, kun otoskoko kasvaa rajatta, niin tällöin tämän jakauman täytyy olla tyypiltään yksi kolmesta standardista ääriarvojakaumasta Fréchet, Weibull tai Gumbel. Tällöin sanotaan, että otosmaksimin jakauma kuuluu ääriarvojakauman vaikutuspiiriin maksimin suhteen. Teorian käsittelyn jälkeen esitellään ääriarvoteorian kaksi tunnetuinta ääriarvojakaumaa. Ensimmäinen niistä on standardi yleistetty ääriarvojakauma eli ns. GEV-jakauma, joka pitää sisällään nuo kolme edellä mainittua standardia ääriarvojakaumaa. Toinen esiteltävä jakauma on yleistetty Pareto-jakauma eli ns. GP-jakauma, jonka jakaumaperheen jäsenet niinikään kuuluvat GEV-jakauman antamien ääriarvojakaumien vaikutuspiiriin maksimin suhteen. Molempien jakaumien avulla pystytään vähän eri menetelmin tutkimaan ääriarvojen tapahtumista jonkin tietyn havaintoaineiston pohjalta ja ekstrapoloimaan havaintoaineiston alueelle, jota ei paljon tunneta eli ääriarvoalueelle. Teorian ja jakaumien konkretisoimiseksi tutkielmassa käydään esimerkin avulla läpi minkälaisia tuloksia ääriarvojakaumilla voidaan saavuttaa. GEV-jakauman sovitus havaintoaineistoon tapahtuu ns. blokkimaksimimenetelmällä. Siinä aineisto jaetaan vuoden blokkeihin ja kustakin blokista poimitaan suurin osaketappio. Tämän jälkeen GEV-jakauma sovitetaan ns. suurimman uskottavuuden menetelmällä havaintoihin. GP-jakauman sovitus aineistoon tapahtuu ns. ylitemenetelmällä, jossa havaintoihin otetaan mukaan tietyn korkean tason ylittävät havainnot. Tämän jälkeen myös GP-jakauma sovitetaan havaintoihin suurimman uskottavuuden menetelmällä. Tuloksista käy ilmi, että molemmat jakaumat vaikuttavat sopivan suhteellisen hyvin havaintoihin joskin GP-jakauma antaa monipuolisempia tuloksia. Lopuksi kerrataan vielä käsiteltyjä asioita sekä kurotetaan esitellyn teorian ohi kohti yleisempää teoriaa. Klassinen ääriarvoteoria ei riippumattomuus oletuksineen nimittäin sellaisenaan sovi reaalimaailman havaintoaineistoon. Asia on tutkielmassa kuitenkin pääosin sivuutettu esityksen helpottamiseksi. fi
dct.language fi
ethesis.language.URI http://data.hulib.helsinki.fi/id/languages/fin
ethesis.language Finnish en
ethesis.language suomi fi
ethesis.language finska sv
ethesis.thesistype pro gradu-avhandlingar sv
ethesis.thesistype pro gradu -tutkielmat fi
ethesis.thesistype master's thesis en
ethesis.thesistype.URI http://data.hulib.helsinki.fi/id/thesistypes/mastersthesis
dct.identifier.urn URN:NBN:fi-fe2017112251166
dc.type.dcmitype Text

Files in this item

Files Size Format View
Graduvalmislopullinen.pdf 560.2Kb PDF

This item appears in the following Collection(s)

Show simple item record