Skip to main content
Login | Suomeksi | På svenska | In English

Novel UCST block copolymers

Show full item record

Title: Novel UCST block copolymers
Author(s): Varadharajan, Divya
Contributor: University of Helsinki, Faculty of Science, Department of Chemistry
Discipline: Polymer Chemistry
Language: English
Acceptance year: 2014
Solutions of thermoresponsive polymers exhibit a drastic and discontinuous change in their properties with temperature. A thermoresponsive polymer that is soluble at low temperatures but undergoes reversible phase transition in a solvent with rising temperature resulting in precipitation or cloud formation is said to exhibit Lower Critical Solution Temperature (LCST)-type behaviour. On the other hand, polymers that exhibit Upper Critical Solution Temperature (UCST)-type behaviour are soluble in water at temperatures above UCST and become reversible insoluble when temperature decreases below upper critical solution temperature. This work deals with the synthesis of novel upper critical solution temperature block copolymers and the effect of pH and electrolyte on their cloud point temperatures. The polymers poly(N-acryloylglycinamide) (PNAGA), poly(ethyleneoxide)-b-poly(N-acryloylglycinamide) (PEO-b-PNAGA), poly(N-isopropyl acrylamide)-b-poly(N-acryloylglycinamide) (PNIPAAm-b-PNAGA) and poly(ethyleneoxide)-b-poly(N-acryloylglycinamide)-b-poly(N-isopropyl acrylamide) (PEO-b-PNAGA-b-PNIPAAm) were synthesized by Reversible Addition-Fragmentation chain-Transfer polymerization in dimethyl sulphoxide. PEO-b-PNAGA and PEO-b-PNAGA-b-PNIPAAm exhibited UCST-type behaviour both in pure water (studied by NMR) and 0.1M NaCl solutions (studied by turbidimetry). Poly (ethyleneoxide) (PEO) block played an important role in enhancing the UCST behaviour of PNAGA by improving the polymers solubility. Yet, higher cloud points in 0.1M NaCl were observed than for PNAGA due to the presence of hydrophobic dodecyl end group. Measuring the particle size between 10-50 °C by dynamic light scattering proved that the polymers phase separated on cooling below the UCST. PEO-b-PNAGA-b-PNIPAAm showed multiresponsive behaviour both in pure water and electrolyte solution exhibiting both LCST and UCST. Change in pH had a dramatic effect on the UCST of PNAGA owing to the carboxylic acid end group shifting the cloud points to higher temperatures with increase in pH. The cloud points were lower for the PNAGA block copolymers in pH 4 buffer solutions compared to that of PNAGA itself due to high solubility of poly (ethylene oxide) block in aqueous solutions.

Files in this item

Files Size Format View
Varadharajan_Divya_thesis.pdf 2.152Mb PDF

This item appears in the following Collection(s)

Show full item record