Skip to main content
Login | Suomeksi | På svenska | In English

Solid State NMR in the Study of Cellulose Ionic Liquid Interactions

Show simple item record

dc.date.accessioned 2014-11-06T13:11:12Z und
dc.date.accessioned 2017-10-24T12:19:48Z
dc.date.available 2014-11-06T13:11:12Z und
dc.date.available 2017-10-24T12:19:48Z
dc.date.issued 2014-11-06T13:11:12Z
dc.identifier.uri http://radr.hulib.helsinki.fi/handle/10138.1/4252 und
dc.identifier.uri http://hdl.handle.net/10138.1/4252
dc.title Solid State NMR in the Study of Cellulose Ionic Liquid Interactions en
ethesis.discipline Polymer Chemistry en
ethesis.discipline Polymeerikemia fi
ethesis.discipline Polymerkemi sv
ethesis.discipline.URI http://data.hulib.helsinki.fi/id/204e19e5-dc8a-4453-be69-4c135b47a4f2
ethesis.department.URI http://data.hulib.helsinki.fi/id/c2dd677c-da9c-4011-94b0-27b1585ac1cb
ethesis.department Kemiska institutionen sv
ethesis.department Department of Chemistry en
ethesis.department Kemian laitos fi
ethesis.faculty Matematisk-naturvetenskapliga fakulteten sv
ethesis.faculty Matemaattis-luonnontieteellinen tiedekunta fi
ethesis.faculty Faculty of Science en
ethesis.faculty.URI http://data.hulib.helsinki.fi/id/8d59209f-6614-4edd-9744-1ebdaf1d13ca
ethesis.university.URI http://data.hulib.helsinki.fi/id/50ae46d8-7ba9-4821-877c-c994c78b0d97
ethesis.university Helsingfors universitet sv
ethesis.university University of Helsinki en
ethesis.university Helsingin yliopisto fi
dct.creator Haarman, Ties
dct.issued 2014
dct.language.ISO639-2 eng
dct.abstract Recent years have seen an increasing interest in green chemistry and an emphasis on renewable resources. New methods for more efficient fractioning and processing of biomass have been explored as a potential replacement for the current pulping industry. It was found that a number of imidazolium based ionic liquids are capable of dissolving cellulose, lignin and even wood as a whole. Although many ionic liquids have been studied for their dissolution properties, the exact dissolution mechanism is not yet fully understood. In the current research, solid state NMR was applied to study the dissolution process of woodpulp in an ionic liquid. A set of spectral techniques, 13C CPMAS, HETCOR, 1H HRMAS and NOESY, was applied to partly dissolved softwood dissolving pulp. The ionic liquid 1-ethyl-3-methylimidazolium acetate (EMIMAc) was used as a solvent. The used samples were 66 wt%, 50 wt%, 33 wt% and 25 wt% pulp in EMIMAc. The CPMAS spectra proved useful in studying the breakdown of the cellulose crystalline structure. Cellulose fibril surfaces were effected already in the 66 wt% pulp sample. The in core crystallinity remained mainly intact up to 33 wt% pulp and then almost completely disappeared for the 25 wt% sample. The HETCOR experiments yielded no information on specific interactions between cellulose and EMIMAc because of too low signal intensities. The HRMAS spectra showed large changes in chemical shifts between the samples for EMIMAc and cellulose protons. The largest changes 0.3-0.7 ppm, were observed for the acidic EMIMAc protons and water. This means a change in hydrogen bonding interactions is taking place for both EMIMAc and cellulose upon increasing the EMIMAc concentration. The NOESY spectra showed that in the 50 wt% sample cellulose mainly interacts with water. In the 25 wt% sample water is largely replaced by acetate anions at the cellulose chains. en
dct.language en
ethesis.language.URI http://data.hulib.helsinki.fi/id/languages/eng
ethesis.language English en
ethesis.language englanti fi
ethesis.language engelska sv
ethesis.thesistype pro gradu-avhandlingar sv
ethesis.thesistype pro gradu -tutkielmat fi
ethesis.thesistype master's thesis en
ethesis.thesistype.URI http://data.hulib.helsinki.fi/id/thesistypes/mastersthesis
dct.identifier.urn URN:NBN:fi-fe2017112252207
dc.type.dcmitype Text

Files in this item

Files Size Format View
Thesis Ties Haarman.pdf 1.156Mb PDF

This item appears in the following Collection(s)

Show simple item record