Intermolecular long-range interactions play an important role in several areas of modern research. In this thesis, van der Waals coefficients for different small coinage metal systems such as H2-H2, H2-Cu2, H2-Ag2, and H2-Au2 are determined from the results of accurate ab initio calculations. A four dimensional potential energy surface is computed with the coupled cluster method with a single, double and perturbative triple excitations (CCSD(T)) using a large augmented Dunning basis set.
In the case of externally neutral molecules, the dominating long-range interactions are often van der Waals dispersion interactions. Many long-range pair potential models are using a pre-defined experimental or computational van der Waals C6 coefficients. To obtain the coefficients, the potential energy surface is modelled with spherical harmonic approximation together with bipolar spherical harmonics. It was noticed that the anisotropies of the potential energy surface can be described with terms which have similar angular dependencies as the electrostatic multipole-multipole interactions and the van der Waals interactions. These include, for example, quadrupole-quadrupole and quadrupole-hexadecapole interaction.
Using the computed potential energy surfaces and least-squares fitting different long-range interaction models, C6 and C8 dispersion coefficients, and quadrupole and hexadecapole moments are obtained for hydrogen, copper, silver and gold dimers.