Skip to main content
Login | Suomeksi | På svenska | In English

Dislocation mechanisms and activation barriers of protrusion formation on a near-surface void

Show simple item record

dc.date.accessioned 2015-02-17T13:45:22Z und
dc.date.accessioned 2017-10-24T12:03:43Z
dc.date.available 2015-02-17T13:45:22Z und
dc.date.available 2017-10-24T12:03:43Z
dc.date.issued 2015-02-17T13:45:22Z
dc.identifier.uri http://radr.hulib.helsinki.fi/handle/10138.1/4503 und
dc.identifier.uri http://hdl.handle.net/10138.1/4503
dc.title Dislocation mechanisms and activation barriers of protrusion formation on a near-surface void en
ethesis.discipline Theoretical Physics en
ethesis.discipline Teoreettinen fysiikka fi
ethesis.discipline Teoretisk fysik sv
ethesis.discipline.URI http://data.hulib.helsinki.fi/id/C29de80f-21cd-424a-b706-b564d642b058
ethesis.department.URI http://data.hulib.helsinki.fi/id/3acb09b1-e6a2-4faa-b677-1a1b03285b66
ethesis.department Institutionen för fysik sv
ethesis.department Department of Physics en
ethesis.department Fysiikan laitos fi
ethesis.faculty Matematisk-naturvetenskapliga fakulteten sv
ethesis.faculty Matemaattis-luonnontieteellinen tiedekunta fi
ethesis.faculty Faculty of Science en
ethesis.faculty.URI http://data.hulib.helsinki.fi/id/8d59209f-6614-4edd-9744-1ebdaf1d13ca
ethesis.university.URI http://data.hulib.helsinki.fi/id/50ae46d8-7ba9-4821-877c-c994c78b0d97
ethesis.university Helsingfors universitet sv
ethesis.university University of Helsinki en
ethesis.university Helsingin yliopisto fi
dct.creator Muszynski, Johann Michael
dct.issued 2015
dct.language.ISO639-2 eng
dct.abstract The presence of dislocations in metal crystals accounts for the plasticity of metals. These dislocations do not nucleate spontaneously, but require favorable conditions. These conditions include, but are not limited to, a high temperature, external stress, and an interface such as a grain boundary or a surface. The slip of dislocations leads to steps forming on the surface, as atomic planes are displaced along a line. If a void is placed very near a surface, the possibility of forming a dislocation platelet exists. The skip of the dislocation platelet would displace the surface atoms within a closed line. Repeating such a process may form a small protrusion on the surface. In this thesis, the mechanism with which a dislocations displace the surface atoms within a closed loop is studied by using molecular dynamics (MD) simulations of copper. A spherical void is placed within the lattice, and the lattice is then subjected to an external stress. The dislocation reactions which lead to the formation of the dislocation platelet after the initial dislocation nucleation on the void is studied by running MD simulations of a void with the radius of 3 nm under tensile stress. Since the dislocations are thermally activated, the simulation proceeded differently for each run. We describe the different ways the dislocations nucleate, and the dislocation reactions that occur when they intersect to form the platelet. The activation energy of this process was studied by simulating half of a much larger void, with a radius of 8 nm, in order to obtain a more realistic nucleation environment. Formulas connecting the observable and controllable simulation variables with the energies of the nucleation are derived. The activation energies are then calculated and compared with values from literature. en
dct.language en
ethesis.language.URI http://data.hulib.helsinki.fi/id/languages/eng
ethesis.language English en
ethesis.language englanti fi
ethesis.language engelska sv
ethesis.thesistype pro gradu-avhandlingar sv
ethesis.thesistype pro gradu -tutkielmat fi
ethesis.thesistype master's thesis en
ethesis.thesistype.URI http://data.hulib.helsinki.fi/id/thesistypes/mastersthesis
dct.identifier.urn URN:NBN:fi-fe2017112251922
dc.type.dcmitype Text

Files in this item

Files Size Format View
johann_muszynski_masters_thesis.pdf 14.49Mb PDF

This item appears in the following Collection(s)

Show simple item record