Skip to main content
Login | Suomeksi | På svenska | In English

Fibonaccin ja Lucasin luvut

Show full item record

Title: Fibonaccin ja Lucasin luvut
Author(s): Sauvala, Sanna
Contributor: University of Helsinki, Faculty of Science, Department of Mathematics and Statistics
Discipline: Teaching of Mathematics
Language: Finnish
Acceptance year: 2015
Abstract:
Tutkielmassa tutustutaan Fibonaccin lukuihin ja Lucasin lukuihin. Tavoitteena on ensinnäkin tarkastella Fibonaccin lukuja ja näiden yhteyttä Lucasin lukuihin ja kultaiseen leikkaukseen. Toiseksi tavoitteena on tarkastella erityisesti Fibonaccin lukuja lukuteorian näkökulmasta tutkimalla alkulukuihin ja jaollisuuteen liittyviä ominaisuuksia. Lisäksi todistetaan Zeckendorfin lause. Tutkielmassa on neljä lukua. Ensimmäisessä luvussa on johdanto ja viimeisessä luvussa on loppusanat. Johdannossa on lyhyt historiallinen katsaus aiheeseen. Toisessa luvussa on ominaisuuksia ja määritelmiä. Luvussa 2.1 määritellään Fibonaccin luvut. Ensimmäiset Fibonaccin luvut ovat nolla ja yksi. Seuraava Fibonaccin luku saadaan aina määrittämällä kahden edellisen Fibonaccin luvun summa. Luvussa 2.2 tarkastellaan lyhyesti Fibonaccien lukujen yhteyttä matriiseihin ja todistetaan tämän avulla kaksi tulosta Fibonaccin luvuille. Luvussa 2.3 esitetyt Lucasin luvut määritellään alkuarvoja lukuun ottamatta samoin kuin Fibonaccin luvut. Ensimmäiset Lucasin luvut ovat kaksi ja yksi. Luvussa 2.4 tutkitaan kultaista leikkausta. Kultainen leikkaus saadaan, kun jaetaan jana kahteen osaan. Jaon ehtona on, että pidemmän ja lyhyemmän osan pituuksien suhde on yhtä suuri kuin koko janan ja pidemmän osan pituuksien suhde. Luvussa 2.5 todistetaan Binet'n kaava Fibonaccin luvuille ja Lucasin luvuille. Binet'n kaavan avulla voidaan määrittää valittu Fibonaccin tai Lucasin luku tuntematta muita Fibonaccin tai Lucasin lukuja. Binet'n kaavan avulla osoitetaan, että peräkkäisten Fibonaccin lukujen suhde lähestyy kultaista leikkausta indeksin kasvaessa rajatta. Lucasin luvuille saadaan samanlainen tulos. Kolmannessa luvussa tarkastellaan lukuteorian ominaisuuksia. Luvussa 3.1 Määritellään Fibonaccin ja Lucasin alkuluvut. Nämä ovat alkulukuja, jotka ovat myös Fibonaccin tai Lucasin lukuja. Osoitetaan, että peräkkäiset Fibonaccin luvut ovat suhteellisia alkulukuja. Luvussa 3.2 on jaollisuusominaisuuksia. Osoitetaan Fibonaccin lukujen olevan jaollisia toisillaan, jos niiden indeksit ovat jaollisia toisillaan. Tulos pätee myös toiseen suuntaan, jos jakajan indeksi ei ole kaksi. Todistetaan lisäksi, että Fibonaccin lukujen suurin yhteinen tekijä on aina Fibonaccin luku. Jaollisuusominaisuuksien perusteella osoitetaan, että alkulukuja on ääretön määrä. Luvussa 3.3 todistetaan Zeckendorfin lause. Sen perusteella jokainen positiivinen kokonaisluku voidaan esittää yksikäsitteisesti Fibonaccin lukujen summana, jos Fibonaccin luvut eivät ole peräkkäisiä ja jos niiden indeksi on suurempi kuin yksi.


Files in this item

Files Size Format View
fibonaccin_lucasin_luvut.pdf 313.3Kb PDF

This item appears in the following Collection(s)

Show full item record