Skip to main content
Login | Suomeksi | På svenska | In English

Experimental Characterization of Organohalide Lead Perovskites for Photovoltaic Applications

Show simple item record

dc.date.accessioned 2015-06-09T10:37:58Z und
dc.date.accessioned 2017-10-24T12:03:52Z
dc.date.available 2015-06-09T10:37:58Z und
dc.date.available 2017-10-24T12:03:52Z
dc.date.issued 2015-06-09T10:37:58Z
dc.identifier.uri http://radr.hulib.helsinki.fi/handle/10138.1/4779 und
dc.identifier.uri http://hdl.handle.net/10138.1/4779
dc.title Experimental Characterization of Organohalide Lead Perovskites for Photovoltaic Applications en
ethesis.discipline Physics en
ethesis.discipline Fysiikka fi
ethesis.discipline Fysik sv
ethesis.discipline.URI http://data.hulib.helsinki.fi/id/3434818f-62d6-4ad2-9c9b-7a86be9cf8e6
ethesis.department.URI http://data.hulib.helsinki.fi/id/3acb09b1-e6a2-4faa-b677-1a1b03285b66
ethesis.department Institutionen för fysik sv
ethesis.department Department of Physics en
ethesis.department Fysiikan laitos fi
ethesis.faculty Matematisk-naturvetenskapliga fakulteten sv
ethesis.faculty Matemaattis-luonnontieteellinen tiedekunta fi
ethesis.faculty Faculty of Science en
ethesis.faculty.URI http://data.hulib.helsinki.fi/id/8d59209f-6614-4edd-9744-1ebdaf1d13ca
ethesis.university.URI http://data.hulib.helsinki.fi/id/50ae46d8-7ba9-4821-877c-c994c78b0d97
ethesis.university Helsingfors universitet sv
ethesis.university University of Helsinki en
ethesis.university Helsingin yliopisto fi
dct.creator Musazay, Abdurrahman
dct.issued 2015
dct.language.ISO639-2 eng
dct.abstract Perovskites are a class of materials that possess many interesting properties with a wide range of technological applications in the field of optoelectronics and photovoltaics. In recent years, perovskites have gained considerable attention as an inexpensive and easy-to-synthesize light absorbing material for so-called organic-inorganic solar cells. In this study we wish to examine the structural and electronic properties of CH3NH3PbI3 organohalide lead perovskites. Charge transport behaviour between the light harvesting perovskite and the underlying electron transport mesostructure are some of the factors that affect the Power Conversion Efficiencies (PCE) of these devices. Therefore, advanced characterization methods were used to investigate the structural and electronic changes that may occur at the interface. Scanning electron microscopy (SEM) was used to survey the structure and morphology of the samples. It was found that the titania grain sizes were 20-25 nm in size and the perovskite grain sizes from 200 nm to 500 nm. The samples were prepared using a solution processing method, which is widely considered as one of the most cost effective ways for crystal growth. However, our studies show that this method does not provide a full perovskite coverage of the surface (14.4% of surface uncovered) which reduces the light harvesting yield. X-ray diffraction (XRD) was employed to study the crystal structure of the sample. It was concluded that the titania was in the anatase phase and the perovskite in a tetragonal crystal system (space group: I4/mcm), with a cell size of a=8.89 A and c=12.68 A. Moreover, our XRD results reveal the existence of a PbI2 crystal phase, indicating an incomplete conversion of the precursors to the perovskite phase. In order to probe the changes that occur at the interface and to elucidate the electron transport mechanisms, X-ray photoelectron spectroscopy (XPS) was conducted and the core-level spectra was investigated. A shift of 0.44 eV in the binding energy of the Ti 2p line was observed between the titania samples and the titania/perovskite. We hypothesize the origin of this shift to be due to a local screening effect, or the formation of a barrier between the perovskite and the titania that is hindering charge transport and is preventing the compensation for the surface charges lost during photoionization. Based on the findings presented in this thesis we suggest, as a possible research direction for the future, UV Photoelectron Spectroscopy (UPS) for constructing the band alignment schemes with the PbI2 layer included and a thorough investigation of the substrate effects and the synthesis routes on the charge transport dynamics of these systems. en
dct.language en
ethesis.language.URI http://data.hulib.helsinki.fi/id/languages/eng
ethesis.language English en
ethesis.language englanti fi
ethesis.language engelska sv
ethesis.thesistype pro gradu-avhandlingar sv
ethesis.thesistype pro gradu -tutkielmat fi
ethesis.thesistype master's thesis en
ethesis.thesistype.URI http://data.hulib.helsinki.fi/id/thesistypes/mastersthesis
dct.identifier.urn URN:NBN:fi-fe2017112252113
dc.type.dcmitype Text

Files in this item

Files Size Format View
Msc thesis final.pdf 71.85Mb PDF

This item appears in the following Collection(s)

Show simple item record