Skip to main content
Login | Suomeksi | På svenska | In English

Gaussin-Bonnet'n lause

Show full item record

Title: Gaussin-Bonnet'n lause
Author(s): Syrjänen, Ossi
Contributor: University of Helsinki, Faculty of Science, Department of Mathematics and Statistics
Discipline: Mathematics
Language: Finnish
Acceptance year: 2015
Abstract:
Gaussin-Bonnet'n lause on differentiaaligeometriassa keskeinen tulos, joka on nimetty Carl Friedrich Gaussin ja Pierre Ossian Bonnet'n mukaan. Lause liittää avaruuden geometrian ja topologian toisiinsa, hyödyntäen geometrisia ja topologisia invariantteja, eli sopivissa muunnoksissa muuttumattomia suureita. Ensimmäisessä luvussa esitellään sileät monistot ja ensimmäisiä perustavanlaatuisia askelia differentiaaligeometrian suuntaan. Aiheen geometrinen luonne ei pelkkien sileiden monistojen tapauksessa nouse vielä ilmiselvästi esiin, vaikka tangenttivektorit ja -avaruudet pystytäänkin jo määrittelemään. Siinä missä topologinen monisto yleistää euklidisen avaruuden ''hyvät'' topologiset ominaisuudet, saadaan sileisiin monistoihin siirryttäessä käyttöön myös keinoja käsitellä suuntia sekä tehdä differentiaalilaskentaa. Perusmääritelmien lisäksi käsitellään muita tärkeitä tuloksia, kuten differentiaalimuotoja ja pintapuolisesti monistoilla integroimisen teoriaa. Toisessa luvussa tartutaan varsinaiseen Riemannin geometriaan ja edetään sileistä monistoista Riemannin monistoihin. Vihdoin selkeämpi geometrisyys tulee esille, kun monistoille määritelty Riemannin metriikka mahdollistaa etäisyyksistä ja kaarevuudesta puhumisen. Konnektioiden avulla mahdollistetaan sileä siirtymä tangenttiavaruudesta toiseen ja päästään käsiksi suunnistetun derivaatan yleistykseen kovarianttiin derivaattaan sekä euklidisen avaruuden suoran viivan yleistyksiin geodeeseihin. Tämän koneiston avulla pystytään määrittelemään monta eri tilanteisiin sopivaa kaarevuuden käsitettä, joiden avulla avaruuden muodosta saadaan tietoa. Viimeisessä, kolmannessa, luvussa määritellään muutamia aiempiin aiheisiin kuulumattomia Gaussin-Bonnet'n lauseen kannalta tarpeellisia käsitteitä. Tilan säästämiseksi algebrallista topologiaa vaativat todistukset sivuutetaan. Lisäksi ''Umlaufsatzin'' eli kiertokulmalauseen todistus sivuutetaan. Lopuksi todistetaan Gaussin-Bonnet'n kaava ja sen avulla itse Gaussin-Bonnet'n lause. Gaussin-Bonnet'n lause on erittäin merkittävä tulos mm. siksi, että se yhdistää niin erilaiset suureet toisiinsa: lokaalista geometriasta kumpuavan Gaussin kaarevuden ja Eulerin karakteristikan, joka on globaali topologinen invariantti. Gaussin-Bonnet'n lause toimii vain 2-ulotteisten monistojen tapauksessa, mutta sille on olemassa monia korkeampiulotteisia yleistyksiä. Näiden yleistysten avulla joitain lauseen geometrisistä ja topologisista seurauksista saadaan hyödynnettyä muissakin monistoissa. Näitä edistyneempiä tuloksia ja muuta, esoteerisempaa, Riemannin geometriaa ei tässä tutkielmassa käsitellä.


Files in this item

Files Size Format View
gradu_Ossi_Syrjanen.pdf 392.0Kb PDF

This item appears in the following Collection(s)

Show full item record