Skip to main content
Login | Suomeksi | På svenska | In English

Recent Developments in Solid Phase Microextraction Techniques

Show simple item record

dc.date.accessioned 2016-02-18T11:51:04Z und
dc.date.accessioned 2017-10-24T12:19:04Z
dc.date.available 2016-02-18T11:51:04Z und
dc.date.available 2017-10-24T12:19:04Z
dc.date.issued 2016-02-18T11:51:04Z
dc.identifier.uri http://radr.hulib.helsinki.fi/handle/10138.1/5327 und
dc.identifier.uri http://hdl.handle.net/10138.1/5327
dc.title Recent Developments in Solid Phase Microextraction Techniques en
ethesis.discipline Analytical Chemistry en
ethesis.discipline Analyyttinen kemia fi
ethesis.discipline Analytisk kemi sv
ethesis.discipline.URI http://data.hulib.helsinki.fi/id/31006aab-9d8f-4c16-a0dc-b20067339529
ethesis.department.URI http://data.hulib.helsinki.fi/id/c2dd677c-da9c-4011-94b0-27b1585ac1cb
ethesis.department Kemiska institutionen sv
ethesis.department Department of Chemistry en
ethesis.department Kemian laitos fi
ethesis.faculty Matematisk-naturvetenskapliga fakulteten sv
ethesis.faculty Matemaattis-luonnontieteellinen tiedekunta fi
ethesis.faculty Faculty of Science en
ethesis.faculty.URI http://data.hulib.helsinki.fi/id/8d59209f-6614-4edd-9744-1ebdaf1d13ca
ethesis.university.URI http://data.hulib.helsinki.fi/id/50ae46d8-7ba9-4821-877c-c994c78b0d97
ethesis.university Helsingfors universitet sv
ethesis.university University of Helsinki en
ethesis.university Helsingin yliopisto fi
dct.creator Rönkkö, Tuukka
dct.issued 2016
dct.language.ISO639-2 eng
dct.abstract The literature part of this thesis consists of a review of recently introduced forms of solid phase microextraction (SPME): thin film microextraction (TFME), in-tube solid phase microextraction(IT-SPME) and the closely related techniques of capillary in tube adsorption trap/solid phase dynamic extraction (INCAT/SPDE). The experimental part covers the study of reagents for on-fiber derivatization of low molecular weight aliphatic amines in atmospheric concentrations. In TFME a thin film of sorbent is used for extraction instead of a rod-like sorbent as in fiber-SPME. This increases analyte uptake and capacity compared to fiber-SPME, making TFME suitable for non-equilibrium extraction. TFME is used with both gas and liquid chromatography, although the large size of the film presents problems in desorption, especially in gas chromatography. Common applications of TFME are environmental monitoring and in vivo extraction. IT-SPME is a dynamic type of SPME most often coupled with liquid chromatography, in which a liquid sample is pumped through an extraction capillary. It is relatively easily automated with most autosamplers. In the most common form a sorbent is coated on the inside walls of the capillary. Recently, packed types of IT-SPME have been introduced, which can achieve very high extraction efficiencies. In addition, sorbent materials which change their properties according to environmental factors such as temperature, potential and magnetic field seem promising for future development. INCAT/SPDE utilizes internally coated metal needles for extraction. Although similar to IT-SPME, it is used for sampling gaseous compounds by pumping them through the needle. Desorption and analysis is usually performed with a gas chromatograph. INCAT/SPDE has some advantages over fiber-SPME, such as larger sorbent volume and robustness. However, it is currently limited to only polydimethylsiloxane-based sorbents, which limits possible applications. In the experimental part, the possibilities of using allyl isothiocyanate, pentafluorobenzaldehyde(PFBAY) and pentafluorobenzyl chloroformate (PFBCF) in simultaneous extraction and on-fiber derivatization of low molecular weight aliphatic amines were explored. Separation and analysis was performed with gas chromatography-mass spectrometry. Allyl isothiocyanate did not derivatize the analytes. On-fiber derivatization with PFBAY was successful for both ethylamine and methylamine, but the concentrations required to observe signal from the derivatives were too high to use PFBAY for air samples. PFBCF was identified as the most promising reagent, working for both dimethylamine and ethylamine. It was also possible to construct a calibration function for gaseous dimethylamine. en
dct.language en
ethesis.language.URI http://data.hulib.helsinki.fi/id/languages/eng
ethesis.language English en
ethesis.language englanti fi
ethesis.language engelska sv
ethesis.thesistype pro gradu-avhandlingar sv
ethesis.thesistype pro gradu -tutkielmat fi
ethesis.thesistype master's thesis en
ethesis.thesistype.URI http://data.hulib.helsinki.fi/id/thesistypes/mastersthesis
dct.identifier.urn URN:NBN:fi-fe2017112251056
dc.type.dcmitype Text

Files in this item

Files Size Format View
Recent Developm ... oextraction Techniques.pdf 1.349Mb PDF

This item appears in the following Collection(s)

Show simple item record