In this master's thesis we develop homological algebra using category theory. We develop basic properties of abelian categories, triangulated categories, derived categories, derived functors, and t-structures. At the end of most oft the chapters there is a short section for notes which guide the reader to further results in the literature.
Chapter 1 consists of a brief introduction to category theory. We define categories, functors, natural transformations, limits, colimits, pullbacks, pushouts, products, coproducts, equalizers, coequalizers, and adjoints, and prove a few basic results about categories like Yoneda's lemma, criterion for a functor to be an equivalence, and criterion for adjunction.
In chapter 2 we develop basics about additive and abelian categories. Examples of abelian categories are the category of abelian groups and the category of R-modules over any commutative ring R. Every abelian category is additive, but an additive category does not need to be abelian. In this chapter we also introduce complexes over an additive category, some basic diagram chasing results, and the homotopy category. Some well known results that are proven in this chapter are the five lemma, the snake lemma and functoriality of the long exact sequence associated to a short exact sequence of complexes over an abelian category.
In chapter 3 we introduce a method, called localization of categories, to invert a class of morphisms in a category. We give a universal property which characterizes the localization up to unique isomorphism. If the class of morphisms one wants to localize is a localizing class, then we can use the formalism of roofs and coroofs to represent the morphisms in the localization. Using this formalism we prove that the localization of an additive category with respect to a localizing class is an additive category.
In chapter 4 we develop basic properties of triangulated categories, which are also additive categories. We prove basic properties of triangulated categories in this chapter and show that the homotopy category of an abelian category is a triangulated category.
Chapter 5 consists of an introduction to derived categories. Derived categories are special kind of triangulated categories which can be constructed from abelian categories. If A is an abelian category and C(A) is the category of complexes over A, then the derived category of A is the category C(A)[S^{-1}], where S is the class consisting of quasi-isomorphisms in C(A). In this chapter we prove that this category is a triangulated category.
In chapter 6 we introduce right and left derived functors, which are functors between derived categories obtained from functors between abelian categories. We show existence of right derived functors and state the results needed to show existence of left derived functors. At the end of the chapter we give examples of right and left derived functors.
In chapter 7 we introduce t-structures. T-structures allow one to do cohomology on triangulated categories with values in the core of a t-structure. At the end of the chapter we give an example of a t-structure on the bounded derived category of an abelian category.