Skip to main content
Login | Suomeksi | På svenska | In English

Numerical Methods for Unconstrained Minimization : An Integrated Computational Environment

Show simple item record

dc.date.accessioned 2010-11-25T12:12:37Z und
dc.date.accessioned 2017-11-06T12:01:31Z
dc.date.available 2010-11-25T12:12:37Z und
dc.date.available 2017-11-06T12:01:31Z
dc.date.issued 1993-02
dc.identifier.uri http://hdl.handle.net/10138/21310
dc.publisher Helsingin yliopisto fi
dc.publisher University of Helsinki en
dc.publisher Helsingfors universitet sv
dc.title Numerical Methods for Unconstrained Minimization : An Integrated Computational Environment en
ethesis.department Matematiska institutionen sv
ethesis.department Department of Mathematics en
ethesis.department Matematiikan laitos fi
ethesis.faculty Matematisk-naturvetenskapliga fakulteten sv
ethesis.faculty Matemaattis-luonnontieteellinen tiedekunta fi
ethesis.faculty Faculty of Science en
ethesis.faculty.URI http://data.hulib.helsinki.fi/id/8d59209f-6614-4edd-9744-1ebdaf1d13ca
ethesis.university.URI http://data.hulib.helsinki.fi/id/50ae46d8-7ba9-4821-877c-c994c78b0d97
ethesis.university Helsingfors universitet sv
ethesis.university University of Helsinki en
ethesis.university Helsingin yliopisto fi
dct.creator Miettinen, Kari
dct.issued 1993
dct.language.ISO639-2 eng
dct.abstract This study discusses the methods, algorithms and implementation techniques involved in the computational solution of unconstrained minimization problem : min x ∈ Rn f : Rn −! R Where Rn denotes the n-dimensional Euclidean space. The main goal in this study was to implement an easy-to-use software package running in personal computers for unconstrained minimization of multidimensional functions. This software package includes C language implementations of six minimization methods (listed below), an user-interface for entering each minimization problem, and an interface to a general software system called MathematicaTM which is used for plotting the problem function and the minimization route. The following minimization methods are discussed here : - Parabolic interpolation in one-dimension - Downhill simplex method in multidimensions - Direction set method in multidimensions - Variable metric method in multidimensions - Conjugate gradients method in multidimensions - Modified steepest descent method in multidimensions The first part of this study discusses the theoretical background of the minimization algorithms to be implemented in the software package. The second part introduces the overall design of the minimization software and in greater detail describes the individual software modules, which, as a whole, implement the software package. The third part introduces the techniques for testing the minimization algorithms, describes the set of test problems, and discusses the test results. en
dct.language en
ethesis.language.URI http://data.hulib.helsinki.fi/id/languages/eng
ethesis.language English en
ethesis.language englanti fi
ethesis.language engelska sv
ethesis.thesistype pro gradu-avhandlingar sv
ethesis.thesistype pro gradu -tutkielmat fi
ethesis.thesistype master's thesis en
ethesis.thesistype.URI http://data.hulib.helsinki.fi/id/thesistypes/mastersthesis
dct.identifier.urn URN:NBN:fi-fe19991249
dc.type.dcmitype Text
dct.rights This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited. en
dct.rights Publikationen är skyddad av upphovsrätten. Den får läsas och skrivas ut för personligt bruk. Användning i kommersiellt syfte är förbjuden. sv
dct.rights Julkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty. fi

Files in this item

Files Size Format View
abstract.pdf 46.57Kb PDF
numerica.pdf 659.6Kb PDF

This item appears in the following Collection(s)

Show simple item record