Skip to main content
Login | Suomeksi | På svenska | In English

Roskapostin torjunta- ja luokittelumenetelmät

Show simple item record

dc.date.accessioned 2011-11-22T09:37:42Z und
dc.date.accessioned 2017-11-06T11:07:08Z
dc.date.available 2011-11-22 fi
dc.date.available 2011-11-22T09:37:42Z und
dc.date.available 2017-11-06T11:07:08Z
dc.date.issued 2011-11-08
dc.identifier.uri http://hdl.handle.net/10138/28269
dc.publisher Helsingin yliopisto fi
dc.publisher Helsingfors universitet sv
dc.publisher University of Helsinki en
dc.title Roskapostin torjunta- ja luokittelumenetelmät fi
ethesis.department.URI http://data.hulib.helsinki.fi/id/225405e8-3362-4197-a7fd-6e7b79e52d14
ethesis.department Institutionen för datavetenskap sv
ethesis.department Department of Computer Science en
ethesis.department Tietojenkäsittelytieteen laitos fi
ethesis.faculty Matematisk-naturvetenskapliga fakulteten sv
ethesis.faculty Matemaattis-luonnontieteellinen tiedekunta fi
ethesis.faculty Faculty of Science en
ethesis.faculty.URI http://data.hulib.helsinki.fi/id/8d59209f-6614-4edd-9744-1ebdaf1d13ca
ethesis.university.URI http://data.hulib.helsinki.fi/id/50ae46d8-7ba9-4821-877c-c994c78b0d97
ethesis.university Helsingfors universitet sv
ethesis.university University of Helsinki en
ethesis.university Helsingin yliopisto fi
dct.creator Huhta, Jukka
dct.issued 2011
dct.language.ISO639-2 fin
dct.abstract Tässä tutkielmassa tutustutaan kirjallisuuden avulla yleisesti käytössä oleviin roskapostin torjuntamenetelmiin. Myös niitä soveltava järjestelmäkokonaisuus esitellään. Työssä käsitellään esimerkiksi mustat DNS-listat, kollaboratiivisia tekniikoita ja harmaalistaus. Sisältöpohjaisiin menetelmiin, erityisesti bayesiläiseen luokitteluun ja logistiseen regressioanalyysiin tutustutaan tarkemmin. Tutkielmassa perehdytään myös roskapostitusta rajoittavaan lainsäädäntöön ja pohditaan, minkälaisilla keinoilla päädyttäisiin kokonaisuuden kannalta parhaaseen lopputulokseen. Työn kokeellisessa osuudessa verrataan logistista regressioanalyysiä ja bayesiläistä luokittelua roskapostintunnistuksessa realistisella koeasetelmalla käyttäen aitoa sähköpostikorpusta aineistona. Tärkeimmät kokeisiin perustuvat johtopäätökset ovat, että logistiseen regressioanalyysiin pohjaava tunnistus täydentäisi luokittelutuloksen puolesta erinomaisesti roskapostintorjuntajärjestelmää bayesiläisen luokittelijan rinnalla, mutta menetelmänä se on liian hidas tietokantanoudoista johtuvan I/O-vaativuuden takia. Lisäksi todetaan, että jopa käytettyä luokittelumenetelmää tärkeämpi seikka oppivaa roskapostintunnistusta hyödyntävässä järjestelmässä saattaa olla luokittelijalle syötetty aineisto, jonka laadun varmistamiseen on syytä panostaa erityisesti monen käyttäjän roskapostintorjuntajärjestelmässä, jossa luokitellaan kaikkien käyttäjien viestit samaan aineistoon perustuen. fi
dct.language fi
ethesis.language.URI http://data.hulib.helsinki.fi/id/languages/fin
ethesis.language Finnish en
ethesis.language suomi fi
ethesis.language finska sv
ethesis.supervisor Kutvonen, Lea
ethesis.supervisor Kangasharju, Jussi
ethesis.thesistype pro gradu-avhandlingar sv
ethesis.thesistype pro gradu -tutkielmat fi
ethesis.thesistype master's thesis en
ethesis.thesistype.URI http://data.hulib.helsinki.fi/id/thesistypes/mastersthesis
dct.identifier.urn URN:NBN:fi-fe201111225842
dc.type.dcmitype Text
dct.rights This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited. en
dct.rights Publikationen är skyddad av upphovsrätten. Den får läsas och skrivas ut för personligt bruk. Användning i kommersiellt syfte är förbjuden. sv
dct.rights Julkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty. fi

Files in this item

Files Size Format View
roskapos.pdf 474.4Kb PDF

This item appears in the following Collection(s)

Show simple item record