Periglasiaalisten ilmiöiden alueellinen mallintaminen subarktisessa ympäristössä
Title: | Periglasiaalisten ilmiöiden alueellinen mallintaminen subarktisessa ympäristössä |
Author(s): | Aalto, Juha |
Contributor: | University of Helsinki, Faculty of Science, Department of Geosciences and Geography |
Discipline: | Geography |
Language: | Finnish |
Acceptance year: | 2011 |
Abstract: |
Periglacial processes act on cold, non-glacial regions where the landscape deveploment is mainly controlled by frost activity. Circa 25 percent of Earth's surface can be considered as periglacial. Geographical Information System combined with advanced statistical modeling methods, provides an efficient tool and new theoretical perspective for study of cold environments. The aim of this study was to: 1) model and predict the abundance of periglacial phenomena in subarctic environment with statistical modeling, 2) investigate the most import factors affecting the occurence of these phenomena with hierarchical partitioning, 3) compare two widely used statistical modeling methods: Generalized Linear Models and Generalized Additive Models, 4) study modeling resolution's effect on prediction and 5) study how spatially continous prediction can be obtained from point data.
The observational data of this study consist of 369 points that were collected during the summers of 2009 and 2010 at the study area in Kilpisjärvi northern Lapland. The periglacial phenomena of interest were cryoturbations, slope processes, weathering, deflation, nivation and fluvial processes. The features were modeled using Generalized Linear Models (GLM) and Generalized Additive Models (GAM) based on Poisson-errors. The abundance of periglacial features were predicted based on these models to a spatial grid with a resolution of one hectare. The most important environmental factors were examined with hierarchical partitioning. The effect of modeling resolution was investigated with in a small independent study area with a spatial resolution of 0,01 hectare.
The models explained 45-70 % of the occurence of periglacial phenomena. When spatial variables were added to the models the amount of explained deviance was considerably higher, which signalled a geographical trend structure. The ability of the models to predict periglacial phenomena were assessed with independent evaluation data. Spearman's correlation varied 0,258 - 0,754 between the observed and predicted values. Based on explained deviance, and the results of hierarchical partitioning, the most important environmental variables were mean altitude, vegetation and mean slope angle. The effect of modeling resolution was clear, too coarse resolution caused a loss of information, while finer resolution brought out more localized variation.
The models ability to explain and predict periglacial phenomena in the study area were mostly good and moderate respectively. Differences between modeling methods were small, although the explained deviance was higher with GLM-models than GAMs. In turn, GAMs produced more realistic spatial predictions. The single most important environmental variable controlling the occurence of periglacial phenomena was mean altitude, which had strong correlations with many other explanatory variables. The ongoing global warming will have great impact especially in cold environments on high latitudes, and for this reason, an important research topic in the near future will be the response of periglacial environments to a warming climate.
Periglasiaaliset prosessit vaikuttavat kylmillä, ei glasiaalisilla alueilla, joilla maiseman kehitystä ohjaavat pääosin erilaiset maaperän routimiseen liittyvät ilmiöt. Noin neljännes maankamarasta on näiden prosessien vaikutuksen alaisena. Paikkatietojärjestelmät ja kehittyneet tilastolliset mallinnusmenetelmät tarjoavat kustannustehokkaan työkalun sekä uuden teoreettisen näkökulman kylmien ympäristöjen tutkimiseen. Tutkielman tavoitteena oli: 1) mallintaa ja ennustaa subarktisessa ympäristössä esiintyvien periglasiaalisten ilmiöiden alueellisen esiintymisen runsautta tilastollisten mallinnusmenetelmien avulla, 2) selvittää ilmiöiden esiintymiseen eniten vaikuttavia tekijöitä hierarkkisella osituksella, 3) vertailla kahta mallinnusmenetelmää: yleistettyjä lineaarisia malleja sekä yleistettyjä additiivisia malleja, 4) tutkia mallinnusresoluution vaikutusta syntyvään ennusteeseen sekä 5) tutkia pistemäisen havaintoaineiston muuttamista alueellisesti kattavaksi.
Tutkimuksen havaintoaineisto koostui 369 pisteestä, jotka on kerätty kesien 2009 ja 2010 aikana tutkimusalueella Kilpisjärvellä Käsivarren Lapissa. Tutkittavat periglasiaaliset ilmiöt olivat kryoturbaatio, rinneprosessit, rapautuminen, deflaatio, nivaatio sekä fluviaaliprosessit. Prosesseja mallinnettiin yleistetyillä lineaarisilla malleilla (GLM) ja yleistetyillä additiivisilla malleilla (GAM) perustuen Poisson virhejakaumaan. Mallien perusteella ennustettiin ilmiöiden esiintymisen runsautta mallinnusruudukkoon, jonka spatiaalinen resoluutio oli yksi hehtaari. Tärkeimpiä selittäviä ympäristömuuttujia tutkittiin lisäksi hierarkkisen osituksen avulla. Mallinnusresoluution vaikutusta selvitettiin pienen itsenäisen tutkimusalueen avulla.
Mallit selittivät noin 45-70 % ilmiöiden alueellisesta esiintymisestä. Spatiaalisten muuttujien lisäämisen jälkeen selitysasteet kohosivat huomattavasti viitaten maantieteelliseen trendiin. Mallien ennustuskykyä tutkittiin itsenäisen evaluointiaineiston avulla. Spearmanin korrelaatiokertoimet evaluointiaineiston kanssa vaihtelivat 0,258 - 0,754. Selitetyn hajonnan ja hierarkkisen osituksen perusteella tärkeimmät muuttujat lähes kaikissa tapauksissa olivat korkeusmerenpinnasta, NDVI-kasvillisuusindeksi sekä rinteen kaltevuus. Mallinnusresoluution vaikutus oli selkeä: liian karkea resoluutio hävitti informaatiota hienomman resoluution tuodessa esiin enemmän vaihtelua, joka oli paremmin paikannettavissa.
Kaikki mallit selittivät tutkittavia ilmiöitä pääosin hyvin ja ennustivat niitä kohtalaisesti. Käytettyjen mallinnusmenetelmien välillä oli hyvin vähän eroja, joskin GLM-mallien selitysasteet olivat hieman korkeampia kuin GAM-mallien. Toisaalta GAM-mallit tuottivat realistisempia alueellisia ennusteita. Tärkein yksittäinen muuttuja oli keskikorkeus, joka korreloi monen muun tärkeän selittävän muuttujan kanssa. Ilmastonmuutoksella tulee olemaan suurin vaikutus juuri kylmille alueille korkeilla leveysasteilla, jonka johdosta tulevaisuudessa tärkeä tutkimuskohde on periglasiaalisten ympäristöjen ja ilmiöiden vaste lämpenevään ilmastoon.
|
Files in this item
Files | Size | Format | View |
---|---|---|---|
periglas.pdf | 7.580Mb |
This item appears in the following Collection(s)
-
Faculty of Science [4247]