Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "Bacteroides"

Sort by: Order: Results:

  • Lahtinen, Emilia (2022)
    The early life gut microbiota plays a major role in establishing neonatal immunity and child’s long-term health. However, relatively little is still known about the role of individual bacteria as most studies so far have focused on characterizing the diversity and the individual and temporal variations of the infant gut microbiome. The genus Bacteroides is of particular interest since its abundance is remarkably decreased in infants born via C-section, and relatively little is known about the genomic and phenotypic characteristics of early Bacteroides colonizers despite their anticipated role in the increased morbidity following C-section birth. This thesis aims to contribute to the isolation and characterization of Bacteroides strains from infant and mother stool samples from the Health and Early Life Microbiota (HELMi) cohort study using culture-based and metagenomic approaches. Gram-negative bacteria were isolated from stool samples of 9-week-old infants and identified by Sanger sequencing. In total, seven isolates identified as unique species of Bacteroides, isolated from infant samples or previously from mother samples in late pregnancy, were then characterized for their potential to activate innate immunity in vitro by using HEK-Blue™ hTLR2-hTLR6 reporter cells either as live cells or filtered culture media. Whole genome shotgun sequenced stool metagenomes obtained from 88 infants during the first year of life were leveraged as well. A computational pipeline able to scale to the large size of the dataset was developed to obtain metagenome assembled genomes (MAGs) from the metagenomes. MAGs obtained from Bacteroides species were further taxonomically and functionally annotated. Among the seven Bacteroides spp. isolated from HELMi mother and infant samples, the majority were able to activate the TLR2/6 receptor in vitro. The isolates varied in their potential to activate the receptor via their cell surface molecules and substances they excreted to the culture media. In addition, over 2500 MAGs could be retrieved from the infant metagenomes, of which 18 belonged to Bacteroides spp. Based on predicted open reading frames, majority of the identified proteins of these MAGs were involved in housekeeping functions. Most of predicted proteins involved in cellular metabolism were, however, related to carbohydrate metabolism, amino acid metabolism, and glycan metabolism, stressing the role of Bacteroides spp. in the gut as important and versatile carbohydrate consumers. The results indicate that the Bacteroides spp. colonizing infant gut have an immunologically and metabolically active role. Further work is needed to characterize the molecules responsible for the TLR2/6 activation as well as the nature of the downstream immune responses elicited by the isolated Bacteroides spp.