Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by study line "Kasvintuotantotieteet"

Sort by: Order: Results:

  • Mosalam, Mohamed (2021)
    The objectives of the study were to assess the efficiency of transient expression of sgRNA/Cas9 construct in Petunia V26, where sgRNA targeted a cytosine deaminase gene (CodA) that converts 5-fluorocytosine into the toxic compound 5-fluorouracil. Disrupting CodA by transient expression of sgRNA/Cas9 introduced a conditional negative selection system that allowed plants with mutated CodA to regenerate on media containing 5-fluorocytosine. The single transcriptional unit vector pMOH2 was designed to carry two amplified sgRNAs guiding Cas9 targeting at HinfI cutting sites. The expression vector was transformed into Petunia V26 using Agrobacterium tumefaciens (pGV2260). Successful mutations were detected on 62.5 mg/L 5-fluorocytosine. Large numbers of in vitro shoots were regenerated from the transformed leaves on a modified MS-media containing 1 mg/L zeatin. The study revealed that transient expression of the sgRNA/Cas9 construct is efficient and can be used to target other genes in Petunia V26. pMOH2 targeted its sites successfully, and proved that CodA can be used as a conditional negative selection marker to detect cells with an edited genome.
  • Mäkinen, Arttu Tapio (2021)
    Crop monitoring in commercial indoor farming is a commonly used method in assessing the general productivity of the cultivated plants. This assessment practice is typically conducted manually by greenhouse workers and is sometimes supplemented by certain hand-held or stationary devices. An interesting example of novel device-assisted crop monitoring technologies utilizes digital imaging devices and computer-driven image analysis algorithms that have been prominently employed within the field of plant phenotyping. In the context of botanical studies, they have been used in e.g. characterizing various complex interactions between the genotypes of important food crops and their agronomic traits in specific prevailing environmental conditions. Additionally, image-based data acquisition technologies also present very interesting prospects for precision agriculture management practices. They could be harnessed to scan entire greenhouse compartments continuously and acquire massive amounts of data on multiple morphological and physiological aspects of crop growth and development in a non-destructive fashion. The acquired data could be implemented into mathematical greenhouse control models and utilized in a plethora of useful applications, including e.g. estimating and predicting biomass production and yield, detecting and localizing potential abiotic/biotic stress symptoms at an early stage, and ultimately enhancing overall crop production efficiency. In this thesis, these imaging technologies were explored in practice by designing and constructing a growth chamber embedded with automatic climate control and a low-cost multispectral imaging subsystem. The final assembly was tested by conducting a simple experiment involving drought-stressed sweet basil plants (Ocimum basilicum L. cv. ‘Genovese’) to determine how early drought-stress related symptoms could be detected purely from multispectral images. While the system carried out the tasks of automated climate control and continuous image capture adequately, the implemented approach in drought-stress detection was deemed unsuccessful. Significant differences between drought-stressed plants and their respective controls were not observed until visible symptoms were present. This was assumed to be due to incompatibility of the camera module’s spectral sensitivity in detecting changes in water content in plant tissue.
  • Markkanen, Tuuli (Marika) (2023)
    Anthropogenic activities have resulted in huge accumulation of plant nutrients in lake sediments. These nutrients can be recycled back to the overlying water and sustain eutrophication. The release of phosphorus (P) from sediments, i.e. internal P loading, has often been a reason for delay in improvement of lake water quality, after reduced external nutrient loading. By removing the sediment, the internal lake nutrient load can be effectively reduced, and it is widely used in lake water quality restoration. By redirecting the reclaimed nutrients back to primary agricultural production, the need for using mineral fertilizers and virgin materials can be reduced. Currently there is, however, a lack of field-scale experiments and determination of best practices to enable efficient nutrient uptake and minimized nutrient leaching back into the lakes. A field experiment was conducted to study the effects of using P-rich lake sediment in different application methods for growing a mixture of forage grasses. The study focused on soil fertility, plant growth and nutrition, and species composition over a period of four growing seasons in central Estonia. Treatments for reducing nutrient losses included applying the sediment alone (Sed), with surface-incorporated biochar (Sed+BC), and as incorporated with surface-mixed biochar-topsoil mixture (Sed+Soil+BC). A treatment consisting of sandy loam topsoil was set up as control (Soil). The mean dry mass yield in the sediment treatments exceeded the local average grass yields and the N and P uptake rates in above-ground biomass (AGB) exceeded the international estimates for grasses. The sediment had no significant effect on AGB yield in comparison to the control. Similarly, no effect was observed in the yield of weeds, but temporary changes in weed species composition and an increasing trend particularly in nettle abundance on the sediment treatments were recorded. Apart from a transient increase in the amount of soluble potassium, no relevant effects were induced by the incorporated biochar. In conclusion, the sediment performed well and served as a plentiful source of P for grasses for four years. Based on the sufficient concentrations of P, sulphur, calcium and potassium in the plant tissue, yield increase could have been expected but most likely the good fertility of the control topsoil evened out yield differences between growing medium treatments. Based on this study, similar lake sediments can be advised to be used as soil amendments on grass cultivation on an agricultural field. Due to high nutrient concentrations, a lower rate could be applied on a wider field area to control excess in nutrient supply, given that the need of nitrogen fertilization is ensured to match plant-specific requirements.
  • Qiu, Yachen (2021)
    Onion (Allium cepa L.) is an important vegetable, which provides major nutritional benefits. In Finland, basal rot caused by Fusarium fungal species (FBR) has become the most destructive disease of onion in recent years. It causes damping off and stunted growth on onion seedlings and root death and abscission and bulb rot on mature onions. The average onion crop loss caused by basal rot has been up to 10% in conventional farming and as high as 30% in organic farming. In this study, a seedling assay was conducted to test the virulence of different Fusarium isolates on a commercial onion cultivar. The study goals were, primarily, to find out which of the Fusarium isolates, originating from onion and crop rotation plants grown in Finland, are pathogenic, and secondly, to compare the virulence of different isolates. Altogether 115 Fusarium isolates were tested for virulence on onion seedlings in a greenhouse. Fifty-five of the tested isolates of F. oxysporum, F. proliferatum and F. redolens were more or less virulent. 19.4% of F. oxysporum isolates, 35.3% of F. proliferatum isolates and 18.2% of F. redolens isolates showed high virulence. Among the aggressive pathogens isolated from onion samples, F. oxysporum f.sp. cepae is still the dominant onion pathogen, F. proliferatum is a new pathogen on onion in Finland, and relatively more aggressive than F. oxysporum. The F. solani and F. tricinctum isolates tested did not have any detrimental effects on the onion seedling health or growth. In order to control FBR in Finland, avoiding planting onion in the infested soils, growing onions from local seedlings to avoid new contamination and storing onions at cold temperatures are recommended.
  • Pekonen, Assia (2023)
    During the last 50 years, agriculture in Finland has become more intensive, open semi-natural farmland habitats have disappeared and the number of animals and plants has been declining. Nectar plants are beneficial resources in agroecosystems. They support crop pollinators, and natural enemies of pests and other species dependent on nectar. Nectar plants can also be indicators of biodiversity. Nectar source plants in field margins provide nectar (and pollen) over the growing season. Various plants benefit from different margins, and their frequency and distribution can be connected with the landscape structure and latitude. This study examined the distribution of nectar plants in field margins of farmland in Southern Finland and determined what plant species provide nectar and at what time of the season. The objectives of the research were to describe the species composition of nectar plant communities in Southern Finland, and hence the biodiversity of plants, and to study the distribution of nectar source plants in the most common margin types. The data were obtained from the Luonto-Mytvas Project research programme “Significance of the Finnish agri-environment support scheme for biodiversity and landscape (Nature MYTVAS)” in 2000-2006. In order to find out what plants have good nectar (pollen) availability literature sources and bee calendars were used. The results shows that the majority of 50 most frequent plants species included in the analysis have value as nectar and pollen sources available for pollinators. There were four different functional groups (f) of plants in the research, depending on their nectar availabilities. The frequent plants in the field margins are available as nectar/pollen sources to pollinators, from April until September-October. There are only few species dependent on margin type in their occurrence. Frequencies of most of the species from all the four groups varied, however, between field-to-field and field-to-road margins.
  • Luotonen, Ilona (2023)
    The cultivation possibilities of American cranberry (V. macrocarpon) have been investigated in Finland, and tunnel cultivation has given promising results. However, the growing season in Finland is short and the ripening of all berries is not guaranteed. Anthocyanins are health promoting color pigments in berries. Light has been found to affect expression of genes related to anthocyanin biosynthesis, anthocyanin levels, and quality in Vaccinium berries in pre-, and postharvest. The purpose of this thesis was to investigate the effect of wide spectrum-, red-, and blue light, exposure time (7 or 14 days) and the expressions of six selected genes related to anthocyanin biosynthesis in different ripening stage in American cranberries under postharvest. Furthermore, the aim was to compare previously measured results of antho-cyanin levels with the selected gene expressions. The genes were CHS, DFR, F3’H, F3’5H, ANS, and UFGT. The ripening stages of berries were green, white, and turning red. The light quality, exposure time, and ripening stages significantly affected the expres-sion of genes related to anthocyanin biosynthesis and the levels of anthocyanins. Blue light significantly increased UFGT expressions and anthocyanin levels in green berry stages. The effect of light quality on gene expression decreased during the ripening pro-cess. However, the wide spectrum with longer exposure time significantly increased the levels of anthocyanins in the turning red stage. With the right light quality and exposure time, gene expression related to anthocyanin biosynthesis can be increased, as well as anthocyanin levels in American cranberry under postharvest.
  • Suwal, Anu (2023)
    Nutrients get deposited in lake sediment from agricultural areas and other anthropogenic activities resulting in internal P loading and eutrophication. On the other hand, the situation with P rock (non renewable resource) used for production of mineral fertilizer is alarming that result in the depletion of P rock and increase P fertilizers price. The issue can be minimized by sediment removal and recycling nutrients from sediment for crop production. The existing results on sediment P availability for crops showed contradictory results and suggested that sediment P bioavailability for the crop is influenced by sediment iron to phosphorus mass ratio. However, comprehensive studies confirming their relationship are currently lacking. Hence, the study aims to determine the potential of sediment as fertilizers for crop (ryegrass) from several eutrophic lakes (in Finland and Estonia). The aim is to identify the effect of different lake sediments on ryegrass aboveground biomass and nutrient uptake. The study was conducted on greenhouse for around 6 months. Randomised complete block design was used for the experiment. The experimental treatments include sand with six different lake sediments: Peipsi, Lämmijärv, Kutajärvi, Kymijärvi, Matjärvi and Enonselkä basin of Vesijärvi, mineral fertilizer (positive) and without P fertilizer (negative) control. The biomass (yield) and nutrient uptake by the plants were measured and then analyzed for nutrient content. Significant effect of lake sediment was observed on ryegrass yield and P uptake. The significantly higher yield was observed for Lake Peipsi sediment treatment than in both controls. The ryegrass dry matter yield was greater in sediment treatments than negative control. Also, ryegrass yield was found to be greater in some sediment treatments than positive control. The concentration of nutrients (sulphur, calcium, magnesium, and potassium) was sufficient in ryegrass plant in all lake sediment treatments. The P uptake from Enonselkä sediment treatment was the highest whereas from Kutajärvi sediment treatment was the lowest. The P uptake was the highest (16.3 kg ha-1) in Enonselkä sediment treatment with the lowest Fe:P ratio of 12. Moreover, the result suggests that Fe:P mass ratio is one of the factors/sediment properties that determine P availability to the crops. However, other sediment properties may also affect P availability in the plants as organic P fraction was also used as an additional P source in some cases. The sediment increased C content and organic matter content compared to controls which improved ryegrass growth in sediment treatments. The increase in nutrient uptake and biomass in lake sediment treatments showed that lake sediment can be potential alternatives for fertilizers in nutrient deficient soil.
  • Xhelilaj, Kaltra (2021)
    Potyviruses are positive-sense single-stranded RNA viruses that can alter several functions of their host plants and consequently, cause significant economic losses in the infected crop plants. During the viral infection, the host transcriptome changes. Stress related genes are triggered, and genes allowing for susceptibility are target for viral-induced modifications. Therefore, in this study, we investigated whether the expression of potential proviral genes SUO1, AGO1, and the major antiviral player AGO2 change in Nicotiana benthamiana (N. benthamiana) in response to potato virus A (PVA; genus Potyvirus) infection. Moreover, we aimed to determine whether helper component protease (HCPro) and active replication have a role in the transcriptional regulation of these genes. Leaves infected with PVA tagged with Renilla luciferase were collected at 3, 6, and 9 days postinoculation, and the viral gene expression was quantified with a dual-luciferase assay. Total RNA was isolated, cDNA was synthesized, and samples were analyzed through qPCR. BLAST hit results revealed that N. benthamiana has three homologs of the SUO1 gene. qPCR data showed no significant change in neither the expression of SUO1 homologs nor the expression of AGO1 during wild-type PVA infection. Moreover, the lack of HCPro or viral replication did not affect the expression of these genes. On the other hand, the expression of AGO2 was approximately 6 and 5 fold up-regulated at 6 and 9 days post-inoculation, respectively. In contrast with the wild-type PVA infection, the mutated viruses had a pronounced effect on AGO2 transcripts at 3 days post-inoculation. Replication-deficient viral RNA increased AGO2 expression circa four-fold, followed by the HCPro-deficient viral RNA increasing expression circa two-fold. AGO2, the major player involved in antiviral defense, was up-regulated during the wild-type infection. Active viral replication and functional HCPro played a role in AGO2 regulation. However, Agrobacterium infiltration can be accounted for interfering with the interpretation of the AGO2 results. Although SUO1 and AGO1 may be potential genes allowing for susceptibility, this study revealed that the PVA infection does not affect the mRNA expression of these genes. Furthermore, it is concluded that active HCPro and viral replication do not have a role in the expression of these genes on mRNA level. To have a clearer view, integrating small RNA, mRNA, and protein quantification analysis of SUO1 homologs will be necessary. Keywords
  • Gauranvi (2021)
    It is important to study the factors which inhibit the cultivation of major crops which serve as a source of food and feed, with various other medicinal values as well. One of these factors is soil degradation and infertility which could be due to high amounts of toxic elements or unfavourable pH conditions. Faba bean is one such crop and is widely affected by the acidity and aluminium toxicity in soil. In this study, an effort has been made to observe the varying tolerance of faba bean accessions and understand the underlying mechanisms used by them under stress conditions. The accessions selected were Aurora, Babylon and Kassa. Each accession was subjected to three treatments and were grown in pH 7 (control), pH 4.5 (acid treatment) and pH 4.5 + Al3+ (aluminium treatment). The pH of peat for acidic treatment was reduced to 4.5 using Sulphuric acid (H2SO4) and for aluminium treatment, Aluminium sulphate (Al2(SO4)3) was added in addition to the acid. At 16 Day after Sowing (DAS) and 30 DAS the physiological data was collected which comprised of chlorophyll concentration (SPAD value), stomatal conductance, leaf temperature and photosynthesis rate. At 35 DAS, the experiment terminated and the shoot data (fresh and dry weights of leaves and stem; and leaf area) of each plant was recorded. Then the root data (tap root length, quality and quantity of nodules and photographs of roots) was taken for each plant. ICP samples for peat, shoot and shoot were also analysed. The data collected were subjected to analysis of variance using R version 4.0.3. (means separated by 5% significance level). From the plant data, Aurora was found to be tolerant. Kassa was sensitive (especially the roots) and Babylon was sensitive to both acid and aluminium treatments. The ICP results provided the reason for this tolerance pattern and a higher concentration of elements needed for plant growth such as P and S were found to be higher in aluminium and acid treatments.
  • Lipping, Sanna (2021)
    Kaivannaisfosfori on merkittävin fosfaattilannoitteiden lähde maailman maataloudessa. Fosforia on kuitenkin rajallinen määrä maapallolla ja kaivannaisfosforin varannot uhkaavat ehtyä 50-500 vuoden aikana. Maailman maatalous joutuu sopeutumaan tulevaisuudessa kaivannaisfosforin vähenemiseen, jolloin fosforin talteen saaminen erilaisin kierrätysmenetelmin tulee olemaan merkittävä kiertotalouden osa. Kierrätyslannoitteiden mahdollisuuksia on yleisesti tutkittu viime aikoina paljon, mutta niiden vaikutusta kauran fosforin ottoon on tutkittu melko vähän. Tämän tutkimuksen tarkastelun kohteena oli kauran (Avena sativa. L Obelix) fosforin otto vuosina 2017 ja 2018 Uudellamaalla sijaitsevalla koelohkolla. Tutkittavina kierrätyslannoitteina olivat lihaluujauho, matokomposti, mädätejäännös ja ammoniumsulfaatti. Kontrollina tutkimuksessa olivat väkilannoiteruutu sekä lannoittamaton ruutu. Koepellon lannoitushistoria oli suomalaisittain tyypillinen ja pellon fosforitaso oli tutkimuksen alkuvaiheessa luokiteltu hyväksi tai korkeaksi. Vuoden 2017 kasvukausi oli pitkäaikaiseen keskiarvoon (1981-2010) nähden kylmä ja sateinen, kun taas vuosi 2018 oli erityisen lämmin ja kuiva. Tämän tutkimuksen perusteella näillä kierrätyslannoitteilla ei ollut merkitsevää eroa kauran fosforin ottoon kumpanakaan vuonna verrattuna väkilannoitteeseen tai lannoittamattomaan käsittelyyn. Merkitsevä ero näkyi kuitenkin vuoden 2017 fosforin otossa lihaluujauhon ja mädätejäännöksen välillä (p=0,0159 vertailussa lannoittamattoman käsittelyn ja p=0,0206 vertailussa väkilannoitekäsittelyn kanssa). Maaperän fosforitaseissa ei havaittu merkitseviä eroja käsittelyiden välillä. Kierrätyslannoitekäsittelyiden välillä havaittiin merkitsevä ero niiden vaikutuksessa maaperän pH-arvoon (p=0,045 vertailussa lannoittamattoman ruudun ja p=0,036 vertailussa väkilannoitekäsittelyn kanssa) vuonna 2018. Tukeyn HSD-testissä ei kuitenkaan tapahtunut jakaantumista eri alajoukkoihin. Koepellon ennestään hyvä ravinnetilanne on voinut vaikuttaa kokeessa tasaamalla eroja eri käsittelyiden välillä.
  • Bubolz, Jéssica (2022)
    Late blight, caused by Phytophthora infestans (Mont.) de Bary, is considered the most devastating disease in potato (Solanum tuberosum L.) production worldwide. Control methods involve mostly the use of fungicides, which are costly and are under political pressure for reduction in Europe. Potatoes from the major potato cultivar in Sweden, King Edward, previously stacked with three resistance (R) genes (RB, Rpi-blb2 and Rpi-vnt1.1) were tested in a local Swedish field, with spontaneous P. infestans infection over three seasons to evaluate the effectiveness and stability of the resistance on leaves. In addition, testing of resistance was done in both in leaves and tubers. Field results demonstrated that the 3R stacked into the cultivar King Edward, showed practically full resistance to infections of P. infestans, with no difference to fungicide use. Moreover, the resistance was effective in both leaves and tubers. The results reveal the 3R potatoes offer a functional field resistance, that could, alone, reduce the total use of fungicides in agriculture by several percent in Sweden, in an event of modifications in the EU legislation.
  • Marila, Emilia (2024)
    Trees are the most visible part of urban vegetation, and they provide many ecosystem services which cannot be replaced. The ability to sequester and store carbon (C), balance peaks of storm water flows, regulate microclimate and provide shade in heat waves are dependent on the size and the vitality of a tree. Through the root system, abiotic and biotic factors in growing medium have a role in tree health and size. Tree fine roots and ectomycorrhizal (EcM) root tips, which are the most distal part of root system, have a crucial role in maintenance of tree vitality as they are responsible of water and nutrient uptake. Growing conditions in urban environments differ from those in natural environments. However, urban tree fine roots and EcM root tips are a scarcely studied subject. In this thesis I studied fine root growth, phenology, depth distribution, annual production, and the number of EcM root tips of three different tree species (Tilia cordata, Tilia × europaea and Betula pendula) growing in three different urban greenspaces (park, street site, unmanaged forest patch). In addition, I studied the effect of site, soil temperature, and soil moisture on root elongation. Fine root elongation was observed by a minirhizotron image system below ground from May until November 2020. Root production and the number of EcM root tips was studied by the ingrowth core method. Betula pendula had the highest fine root elongation among the three tree species, which can at least partially be explained by species-specific differences. Growing site had a statistically significant effect on root elongation, but also the thermal sum of soil temperature and the level of relative extractable water affected root elongation. Average height and trunk diameter between Tilias grown at the Garden and Tilias grown at the street side were different relative to their age. Tilias had clearly less EcM root tips on the street side, their fine roots elongated more, and the amount of dead roots was slightly higher than at Garden, indicating that root turnover rate was faster for street trees as they tried to absorb nutrient in a poorer environment. Based on previous studies, differences in fine root elongation between sites were expected, as e.g. rising of the temperature has been found to affect positively to root elongation. Additionally, the poor nutrient status of the growing medium has also previously been found to increase root growth. The site and the characteristics of the growing medium can has a significant effect on the fine roots and thus on the growth and vitality of the entire tree.
  • Taniwan, Steven (2020)
    Norway spruce is commonly cultivated throughout Europe, Russia, and Japan. Cultivation of Norway spruce often faces the issue of fungal diseases, one of which is cherry rust disease caused by Thekopsora areolata. The gene model MA_10g0010 encoding an uncharacterized peroxidase (PabPrx86) has previously been associated with the presence of this pathogen. The aim of this study was to describe and assay the protein produced from this gene model, observe its localization in the cell, and determine its relative expression level in different tissues of Norway spruce. Experiments were performed by isolating the full length cDNA for PabPrx86 and cloning the cDNA into destination vectors pEAQ-HT-DEST1 and pK7FWG2 leading to a hypertranslatable transcript and a C-terminal GFP fusion, respectively. The plasmid constructs were transformed to Agrobacterium tumefaciens and agro-infiltrated to Nicotiana benthamiana. In addition, the relative expression level of this gene in different spruce tissues at different times of the year was determined using the qRT-PCR method. Sequencing showed that there were two allelic variants of this gene in the spruce individual sampled for RNA. Results showed that both alleles code for a peroxidase with basic pI. Subcellular localization with the GFP tag detected that PabPrx86 protein was located out of cytoplasm, indicating that the protein was translated in the ER-ribosomes, whereas relative expression level analysis revealed that PabPrx86 was highest expressed in the bud and lateral bud in June. Peroxidases are known to relate with plant defense, but further experiments are required to determine the role of PabPrx86 in Norway spruce and what the association with T. areolata means.
  • Laugel, Henri (2022)
    Faba bean (Vicia faba L.) is an annual herbaceous cool-season food legume widely cultivated worldwide, especially for its high seed protein content. However, its major limitation in being used as food and feed, is the presence of antinutritional factors in its seeds, especially vicine and convicine (VC), two related compounds, which may be harmful to livestock and G6PD-deficient humans. To remove VC, the most sustainable method is breeding for low-VC faba bean cultivars. To improve the efficiency and speed of breeding programs, breeders use marker-assisted selection (MAS). The identification of genes responsible for VC content allows the development of reliable DNA markers and a better understanding of the molecular basis of this trait. The major-effect QTL controlling VC content named “VC1”, was identified in faba bean chromosome 1, and a few minor-effect QTLs were detected in previous studies. Hence, a total of 165 RILs from the cross Mélodie/2 (low-VC) x ILB 938/2 (high-VC) were genotyped and evaluated for VC content. Composite interval mapping was run on R/qtl software with accurate phenotypic data associated with a high-density SNP-based genetic map. Results revealed two minor-effect QTLs in addition to VC1. One was on chromosome 4 and had about 15% effect on convicine content. The other was on chromosome 5 and had 15% effect on vicine and total VC content. This research also reports candidate genes for the newly detected minor-effect QTLs through comparative genomics with the Medicago truncatula genome. Hypotheses were proposed on the role of these candidate genes on the VC biosynthetic pathway or transportation into the embryo beans for further testing.
  • Pietikäinen, Laura; Pietikäinen, Laura (2021)
    Fragaria x ananassa is a widely appreciated berry with its production growing all around the world. Thus, there will be a huge demand for strawberry breeding in the future especially since the climate change is casting an extra shadow upon the growing conditions which is also why there is a need for better understanding of different cultivar types. There are everbearing and seasonally flowering cultivars of both Fragaria x ananassa and Fragaria vesca. The seasonally flowering types such as ʻHapilʼ flower once during the growing season whereas everbearing types such as ʻCalypsoʼ flower for a longer period. The gene behind the change in the flowering habit has been tracked to the photoperiodic pathway of F. vesca although the gene behind the trait in F x ananassa remains unknown. The aim of this project was to compare flowering and vegetative responses of in vitro propagated everbearing F x ananassa cultivar ʻCalypsoʼ and seasonally flowering ʻHapilʼ in long and short day photoperiodic conditions in order to find out differences between everbearing and seasonally flowering cultivars. This was done by collecting data from phenotype observations linked to the vegetative and generative stages of the development of strawberries. The phenotype data was then combined with gene expression data of FaSOC1, FaTFL1, FaGA20ox4 and FaAP1 which are genes known to work on the photoperiodic pathway that regulates the switch between the vegetative and generative development of both F x ananassa and F. vesca. In addition, the expression of an everbearing phenotype associated gene FaFT2 was analysed. This study was a part of a larger project aimed to find out the genetic basis for the everbearing habit of F x ananassa. Part of the ʻCalypsoʼ plants were induced to flower already during the acclimatization period and the rest at the very beginning of the treatment period which then caused differential flowering times between the ʻCalypsoʼ groups. Short day grown ʻHapilʼ was induced to flower between weeks three and six whereas long day grown ʻHapilsʼ remained vegetative. Phenotypic observations were also backed up by the expression of FaTFL1 and FaAP1. Instead the FaSOC1 expression was repressed in short day conditions more than in the long days regardless of the cultivar type. ‘Calypsos’ were capable of producing runners regardless of photoperiod or flower induction. Consequently the runner production seemed to be regulated by factors outside of the photoperiodic pathway. However, the expression of runnering associated FaGA20ox4 was low and variable due to the sampling strategy. Interestingly most of the axillary meristems of short day grown ‘Hapils’ remained dormant for an unknown reason. Expression of FaFT2 was low on the apical meristems and further support for the role of the gene in everbearing phenotype was not found.
  • Ghimire, Sadikshya (2021)
    Fusarium proliferatum has recently become a major threat to onion, which is an important food crop for food security and has a significant role in the agricultural sector. This fungus is found causing rots and producing mycotoxin fumonisin that, if ingested, can cause carcinogenic effects in humans and fatal diseases in animals. F. proliferatum has been identified as a pathogen causing rots and wilts in many plants in several countries, and recently some isolates of this pathogen were also found in Finland causing basal rot in onion. Though F. proliferatum has wide adaptability and pathogenicity, there are research gaps on this newly emerging pathogen, which is mostly limited to some specific hosts such as maize. There is a lack of knowledge of its infection mechanisms and mycotoxin production dynamics in onion. This experimental work was conducted at the University of Helsinki, Finland, to study the nature of pathogenicity and toxin gene expression of F. proliferatum in laboratory conditions as a function of time. Spore suspensions of three isolates of F. proliferatum, Fpr047, Fpr049, and Fpr919, were prepared and used as inoculums that were injected into healthy organically grown onions, which were then stored in dark for five weeks. Control bulbs were inoculated with sterile water. Pathogen virulence, based on symptom development, and fungal colonization in the onion tissues were determined at five different time points and the toxin gene expression was determined at three time points. Colonization levels were determined by real-time PCR using primers binding to the intergenic spacer (IGS) region of F. proliferatum. A part of the IGS region of the three isolates was sequenced to study the diversity between the isolates. All the tested isolates were found to be virulent, and they colonized the onions after one week from inoculation. However, the isolate Fpr919 appeared different from the other two in terms of symptom severity. It was more aggressive than the other two, causing disease symptoms earlier and causing more severe rot symptoms in the infected bulbs. It also had nucleotide sequence variations in the IGS region in comparison with the other two isolates, suggesting genetic diversity. No significant differences were observed between the isolates in the fungal colonization levels. Expression of FUM1 gene and a putative virulence gene SIX2-1 was detected by RT-RT-PCR in most of the infected tissue samples. The results obtained signify that F. proliferatum is a pathogen with the potential of producing fumonisin toxin in onion, suggesting the need for further molecular study on this fungus to control the disease and prevent mycotoxin contamination in plant products.
  • Kärnä, Aleksi (2023)
    Täsmäviljelyn yleistyminen on lisännyt tarvetta maaperän spatiaalisen vaihtelun kartoittamiselle, ja tämän myötä markkinoille on tullut erilaisia maaperäkartoitusmenetelmiä. Tämän tutkimuksen tavoitteena oli selvittää, pystytäänkö gammasäteilyn mittaamiseen perustuvalla SoilOptix-maaperäkartoitusmenetelmällä estimoida pellon sisäistä pH-arvon, helppoliukoisen fosforin sekä mangaanin vaihtelua. Tutkimus toteutettiin Forssassa sijaitsevalla peltolohkolla, jossa yhteensä 48 mittauspisteen maa-analyysituloksista ja SoilOptix-menetelmän pistemäisistä estimaateista tehtiin korrelaatioanalyysejä ja pistekaavioita. Myös gammasäteilyraakadatan toistettavuutta havainnoitiin visuaalisesti. Työn toinen tavoite oli selvittää, vähensikö peltolohkolle tehty täsmäkalkitus pellon sisäistä satovaihtelua ja ravinnevaihtelua. Tämän selvittämiseksi analysoitiin puimurin satokartoitusaineistoja vuoden 2020 kevätrapsin (Brassica napus ssp. oleifera (Moench) Metzg.) ja vuoden 2022 kevätvehnän (Triticum aestivum L.) puinneista. SoilOptix-menetelmällä ei pystytty estimoida peltolohkon sisäistä vaihtelua minkään koejäsenen osalta. Kalkitus ei oleellisesti vähentänyt peltolohkon sisäistä satovaihtelua, mutta ravinnevaihtelua se vähensi. Eri vuosien gammasäteilyn raakadatassa oli samankaltaisuuksia visuaaliseen havainnointiin pohjautuen. Syyt heikkojen korrelaatioiden taustalla eivät ole ilmeiset, ja ne vaatisivat lisätutkimusta. Erityinen kiinnostuksen kohde olisi menetelmässä kerätyn raakadatan lukuarvot, joita ei tässä tutkimuksessa saatu tarkastella. Johtopäätöksenä todetaan selvä lisätutkimuksen tarve menetelmälle.
  • Zeru Zelelew, Daniel (2024)
    The sunflower family (Asteraceae) is characterized by its unique head-like inflorescence known as a capitulum. The capitula have evolved enormous diversity in size and shapes, and such variability depends upon the inflorescence meristem (IM) patterning. Gerbera hybrida has emerged as one of the model species for the large Asteraceae plant family. Previous studies have reported that the inflorescence architecture of gerbera has both conserved and derived gene regulatory features. So far, several studies have revealed that some genes, which have highly specialized functions in regulating Arabidopsis flower development, are represented by expanded gene families in gerbera and gained new functions at the level of IM. IM determinacy refers to the fate of the meristem to continue growing indefinitely or to terminate into a flower. However, there is still a significant knowledge gap to understand regulation of IM determinacy in Asteraceae. This research aims to explore the expression of the gerbera GSQUA genes and their potential interactions with the key regulators, GhLFY, GRCD2, GRCD7, and GhTFL1, in the patterning of IM of wild-type (WT) gerbera. The study also involved the phenotypic characterization of GhTFL1 overexpression and GhTFL1 RNAi transgenic lines. The results showed that GSQUA2, GSQUA3, and GSQUA7 had similar expression patterns with GhLFY and were expressed throughout the IM and involucral bract, ray, and disc floret primordia. The expression of GSQUA5, which resembles the expression of GRCD2 and GRCD7, started from IM2 and was upregulated throughout the inflorescence development. GRCD6 and GRCD8 exhibited an early and much broader range of expression patterns than the other GSQUAs. Meanwhile, GhTFL1 was expressed only in the shoot apical meristem and IM1. Results from the phenotypic analysis of the GhTFL1 transgenic lines showed that both ectopic and suppressed GhTFL1 expression lines have altered inflorescence architecture. Overexpression of GhTFL1 resulted in the formation of a dome-shaped indeterminate IM, which is not consumed by floral primordia. Severe GhTFL1 RNAi phenotypes show a very small determinate inflorescence that is entirely consumed, with a terminal flower developed at the center. The expression patterns and interaction of GSQUA genes with GhLFY, GRCD2, GRCD7, and GhTFL1 indicated that GSQUA2/3/5/7 are the most promising candidates for regulating IM patterning and determinacy of gerbera. Besides, the findings underscore the crucial role of GhTFL1 in regulating the inflorescence architecture of gerbera and significantly advance our understanding of genetic regulation of IM determinacy in the Asteraceae family.
  • Omran, Mohammad (2022)
    Strawberry breeding in Finland began 60 years ago and has largely relied on traditional breeding methods. The geography of Finland, as well as local consumer preferences for darker-coloured strawberries, have been the main focus of selection in all implemented Finnish breeding programs. With several successful and popular cultivars have been released, the current focus is on increasing yield and disease resistance while maintaining the excellent fruit quality of breeders' selections. A panel of 175 garden strawberry accessions was created and trialled at the Natural Resources Institute Finland (Luke) as part of a Nordic-Baltic pre-breeding collaboration between the institute and the Norwegian breeding company Graminor AS. A medium-density, genome-wide scan for 50K SNPs has been performed on each individual of the panel. This panel represents the genetic diversity present and typical for cultivated strawberry in the Nordic-Baltic region, and it is expected to provide Nordic breeders with markers tailored to their plant material diversity, supporting their future selection decisions and accelerating their breeding cycles. In this study, symptom severities of two strawberry leaf diseases (leaf spot caused by Mycosphaerella fragariae and leaf scorch caused by Diplocarpon earlianum) and seven fruit quality traits (berry weight, skin colour, flesh colour, evenness of flesh colour, basket appearance, predominant berry shape and tip type) were scored in the panel. GAPIT and statgenGWAS statistical packages in R were used to run five different GWAS models: Significant SNP-trait associations were found using single-locus (GLM and MLM) and multi-locus (FarmCPU and BLINK) association mapping analyses. The study had shed a light on the importance of considering several statistical models and parameters for a maximum benefit of association mapping studies. Among significant SNP-trait associations for fruit weight, fruit skin colour and fruit flesh colour, four were partially characterized by inspecting their allelic effects. On chromosome Fvb6-1, appearance of consensus, significant signals from the flesh colour trait of secondary-position berries is discussed. Nine significant SNP-marker associations were detected for berry weight.
  • Rehman, Attiq ur (2020)
    Wheat (Triticum aestivum L.) is one of the major crops in the world and an important agricultural commodity in Finland with various uses. Fusarium head blight (FHB) is a deadly disease of cereal crops and with the gradual increase in temperature and precipitation, it is becoming alarming to Finnish agriculture. Deoxynivalenol (DON) is a vomitoxin produced by Fusarium graminearum species during the FHB infection and is hazardous to health if taken in larger quantities by humans and animals. European Union has legalized the maximum allowed DON content in wheat flour for human consumption at 1.75 ppm. Various types of resistance against FHB are known till date, including tolerance and escape from the disease. Anther extrusion (AE) is a highly heritable trait in wheat and is mechanistically involved in resistance against FHB by preventing the availability of nutrients for the fungus. Other traits such as heading, maturity, and height have shown correlations with FHB incidence and severity in previous studies. Genomic information is crucial to identify markers to accelerate wheat breeding programs against FHB. This experiment was conducted at Boreal Plant Breeding Ltd. Finland using 198 spring wheat breeding lines in a row-and-column design with three replications in an artificially spawn-inoculated F. graminearum field. The goal of the project was to evaluate the genetic diversity for various agronomic and FHB-resistance traits and to estimate correlations among them. A genome-wide association study was also performed by using 11,987 SNP markers to investigate any marker-trait association(s) in the spring wheat breeding germplasm. Larger phenotypic variability was observed in both agronomic and FHB-resistance related traits. Many spurious associations were found with general linear models (Naïve and Q model). No marker-trait associations were observed among the traits in mixed linear model (K) after including kinship as a covariate. Cryptic relatedness among breeding lines has shown a significant role during association mapping. An unexpected negative correlation was found between DON and Fusarium severity indicating inaccuracies in phenotyping. A negative phenotypic and genotypic correlation was found between AE and DON. Future studies on the validation of AE as a phenotypic marker against DON accumulation is recommended. Repeating the experiment with the inclusion of more lines with Fhb1 gene in homozygous state might be helpful in finding reliable associations for FHB-resistance related traits.