Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by study line "ingen studieinriktning"

Sort by: Order: Results:

  • Wood, Steffaney (2020)
    Cyanobacteria of the order Nostocales, including Baltic Sea bloom-forming species Nodularia spumigena, Aphanizomenon flosaquae, Dolichospermum spp., produce resting stages, known as akinetes, under unfavorable conditions. These akinetes can persist in the sediment and germinate if favorable conditions return, simultaneously representing past blooms and possibly contributing to future bloom formation. The present study characterized cyanobacterial akinete survival, germination, and potential toxin production in 40-to-175- year-old brackish water sediment archives in order to understand historical bloom expansion, akinete persistence, and cyanobacteria life cycles in the northern Baltic Sea. Results showed that cyanobacterial akinetes can persist in and germinate from northern Baltic Sea sediment up to 424 and 174 years old, at coastal and open-sea locations respectively. Akinete abundance and viability decreased with age and depth of vertical sediment layers. Increases in sediment organic matter content and akinete abundance largely corresponded with the historical expansion of anthropogenic eutrophication-fueled blooms of cyanobacteria in the northern Baltic Sea, beginning in the mid-twentieth century. The detection of potential hepatotoxin production from akinetes and revived cultures was minimal and restricted to the coastal sediment core. Phylogenetic analysis of culturable cyanobacteria from the coastal sediment core indicated that the majority of strains likely belonged to benthic genera Anabaena. Findings also supported the notion that, in comparison with Nodularia and Aphanizomenon spp. akinetes, Anabaena/Dolichospermum spp. akinetes play a more significant role in their life cycle and bloom initiation strategies. Further research is recommended to accurately quantify akinetes and create a higher rate of toxin gene detection from brackish water sediment samples in order to further describe species-specific benthic archives of cyanobacteria. Overall, measuring cyanobacterial akinete abundance, germination experiments, and genetic methods can be effectively used to determine akinete persistence, viability, and potential toxin production in brackish water sediment samples. This study highlights the prolonged survival of cyanobacterial akinetes in northern Baltic Sea sediment samples, up to 174 years old.
  • Chesnut, Sally (2022)
    Emerging research suggests that bacteriophages (phages) may exhibit alternative infection strategies that deviate from the preconceived lytic or lysogenic life cycles. Carrier cell infection is an alternative phage life cycle where complete virus particles are formed and remain within host cells, without cell lysis or integration into the host genome. Phage Φ6 (Φ6), the type member of the double-stranded RNA (dsRNA) virus family Cystoviridae, is a lytic phage that can also establish a carrier cell within its plant pathogenic host, Pseudomonas syringae pathovar (pv.) phaseolicola strain HB10Y (HB10Y). This thesis contributes to current limited knowledge and provides an insight on the underlying mechanisms of the Φ6 carrier cell infection. This study has agricultural and ecological relevance and may contribute to future plant therapeutic options. Synthetic carrier cell lines harboring Φ6 tri-segmented genome or Φ6 genomic constructs in which the coding regions in the S- and/or M- segments were replaced by heterologous sequences from tobacco mosaic virus (TMV) were created using a reverse genetics method. Spontaneous Φ6 carrier cell lines were also isolated from HB10Y after exposure of the host to excess phage. Spontaneous carrier cells were not stable, but rather occasionally released phage into liquid culture. Synthetic carrier cell lines were subjected to secondary phage infection and were found to be less susceptible than wild type (WT) to Φ6 but not Φ8, a more distant member of Cystoviridae. Studies suggest that carrier cell resistance to secondary infection (superinfection exclusion) is exhibited through the Φ6 S-segment gene 8. To test how temperature affects the stability of Φ6 carrier cells, spontaneous carrier cell line culture was incubated at RT and 30°C, and phage productivity was compared. Elevated temperature induced carrier cell stability. Comparison of the growth curves between Φ6 synthetic and spontaneous carrier cell lines and their respective WT strains showed that Φ6 carrier cell infection does not greatly affect host growth.
  • Sarasjärvi, Riikka (2022)
    This study examines international doctoral candidates’ decision to apply to the University of Helsinki. It aims to shed light on the factors that result in choosing a doctoral programme at the Doctoral School in Humanities and Social Sciences as well as illustrating what that decision making process constitutes of. Finally, it seeks to understand how newly started doctoral candidates evaluate the decision that they made. For this case study 10 international doctoral candidates in humanities or social sciences were interviewed individually about their journey from a prospective student to an enrolled doctoral candidate. The interviews reveal different motivations and aspirations as well as the influence on the service evaluation. The decision making process constitutes of need recognition, search of information, evaluating information, making the choice and post-purchase evaluation. A dominant factor waking the need for a doctorate is a wish for career improvement either by advancing in one’s career or by making it possible to enter a research career. Personal and interpersonal reasons can also influence the desire for a PhD in a specific institution, for example, because of plans of migrating to that country or finding a supervisor there. The doctoral candidates evaluated their decision cautiously but in a positive manner. Some described challenges at the onset of their journey but none of those challenges were implied to be so serious that they would consider dropping out. The challenges were mostly related to academic and social integration, funding or figuring out how to organise one’s doctoral studies, however, the informants were mostly optimistic about overcoming these challenges. * Tässä tutkimuksessa tarkastellaan kansainvälisten tohtorikoulutettavien päätöstä hakea Helsingin yliopiston Humanistis-yhteiskuntatieteellisen tutkijakouluun. Tutkimuksen tarkoituksena on valaista valintaan vaikuttavia tekijöitä sekä havainnollistaa, mistä päätöksentekoprosessi koostuu. Lisäksi se pyrkii ymmärtämään, miten hiljattain aloittaneet tohtorikoulutettavat arvioivat tekemäänsä päätöstä. Tätä tapaustutkimusta varten haastateltiin 10 kansainvälistä tohtorikoulutettavaa, jotka opiskelevat jossakin Helsingin yliopiston Humanistis-yhteiskuntatieteellisen tutkijakoulun tohtoriohjelmassa. Haastatteluissa kartoitettiin heidän reittinsä tohtoriopintoja harkitsevasta opiskelijasta tohtoriohjelmaan hyväksytyiksi tohtorikoulutettaviksi. Haastattelut paljastivat syynsä hakeutua tohtorikoulutukseen sekä päätöksentekoprosessin eri vaiheissa vaikuttavat tekijät. Hakuprosessin ja opintojen alkuvaiheen palvelukokemukset heijastuivat palvelun arviointiin. Päätöksentekoprosessi koostuu tarpeen tunnistamisesta, tiedonhausta, tiedon arvioinnista, valinnasta ja päätöksen jälkeisestä arvioinnista. Merkittävä tohtorikoulutukseen hakeutumiseen kannustava tekijä on toive urakehityksestä joko etenemällä urallaan tai mahdollistamalla tutkijanuralle pääsy. Henkilökohtaiset syyt sekä ihmissuhteet voivat vaikuttaa tohtoriohjelman valintaan tietyssä yliopistossa, esimerkiksi jos suunnitelmissa on muuttaa kyseiseen maahan tai tohtorikoulutettava löytää sieltä ohjaajan. Tohtorikoulutettavat arvioivat päätöstään varauksella, mutta positiivisesti. Jotkut kuvailivat haasteita matkansa alussa, mutta mikään näistä haasteista ei ollut niin vakava, että he harkitsisivat lopettamista. Haasteet liittyivät enimmäkseen akateemiseen ja yhteisöön integroitumiseen, rahoitukseen tai tohtoriopintojen organisointiin, mutta informantit suhtautuivat enimmäkseen optimistisesti haasteista selviytymiseen.
  • Oikkonen, Hanna (2022)
    The use of recycled fibers in paper production has increased during recent years. Recycled fibers are a more sustainable alternative compared to virgin fibers made from wood. However, paper mills utilizing recycled fibers have more microbiological problems compared to mills using only virgin fibers. Especially, anaerobic bacteria are harmful for papermaking processes utilizing recycled fibers. Bacteria of the class Clostridia comprise a very diverse group and have many different metabolic properties. Bacteria of class Clostridia can ferment different substrates, for example cellulose and starch, crucial in paper mills utilizing recycled fibers. Fermentation does not only decrease material efficiency, but also the acids produced during fermentation deteriorate papermaking processes. Volatile fatty acids are odorous compounds causing bad odors in the mills and in the final products. Clostridia can also produce, for example, hydrogen which is an explosive gas endangering the safety of the mill employees. Quantitative PCR is a feasible detection method for microbes. Here, a qPCR method was developed for the detection of most abundant bacteria in the class Clostridia in the recycled fiber mills. The designed primers targeted the most harmful bacteria from the genera Clostridium, Ethanoligenens, Fonticella and Ruminococcus identified in the recycled fiber mills. Three primer sets were designed for the target bacterial group. Positive controls of each target bacterial genus was included and close relatives from class Bacilli were used as negative controls. The designed primer sets were compared in efficiency, specificity and performance with process samples collected from paper mills using recycled fibers. One of the primer sets was found the most potential for the qPCR detection method for the diverse target bacterial group. All positive controls were amplified with the designed qPCR assay, whereas the designed primers discriminated well each negative control in vitro. The applicability of the designed qPCR assay was yet confirmed with process samples collected from mills utilizing recycled pulp. Even though the efficiency of the designed primer set was not optimal, the designed assay was determined feasible for the detection of the target group in the recycled fiber mills usually high in bacterial density.
  • Gonzalez Ramos, Victor Manuel (2020)
    Yeasts are a major spoilage threat in carbonated and fermented beverages, causing considerable economic losses for the manufacturers. Dekkera bruxellensis and Zygosaccharomyces bailii are the two most common spoilage yeast in beverages due to their high tolerance towards beverage-related stress factors. For industry, early and reliable detection of contamination is necessary to minimize spoilage potential and maintain product quality. Cultivation on selective/differential media remains the main method for detection of these organisms, with incubation times from 3 to 15 days. Beverage-related stresses may generate sub-population of injured yeast cells and further delay or even prevent the detection in regular media. PCR, flow cytometry and other alternative detection methods also rely on enrichment cultivation to achieve the required sensitivity for the industry. Therefore, reduced incubation time of sample enrichment and improved detection of injured cells is crucial for a more rapid and reliable detection method. Modification of specific compounds in the culture medium composition has been reported to improve recovery of bacteria after stress. As analogue studies have not been performed on spoilage yeast, modification of the culture medium composition offers a possibility to improve the growth of injured and healthy yeast cells. The aim of this study is to reduce cultivation time required for detection of healthy and injured Dekkera bruxellensis and Zygosaccharomyces bailii cells. Initially, conditions for inducing organic acid and heat injury in D. bruxellensis, D. anomala and Z. bailii cells were studied in an artificial beverage containing basic components of soft drinks. Selective and non-selective plate cultivation and fluorescent viability stains were used to assess the level of injury. The organic acid treatments resulted in inconsistent injury of spoilage yeasts, and thus, recovery from organic acid injury could not be screened. The heat treatments resulted in consistent 1-3 log reduction of viable cell counts. Altogether, 46 potential injury-relieving or growth-enhancing supplements were screened for their effects on the growth rate and lag time of heat-treated and untreated cells in non-selective YM broth using high-throughput automated turbidometry. During individual screening, the growth of Z. bailii strains was significantly improved (p<0.05) only by supplementation with three ion sources: calcium chloride, potassium chloride, and magnesium sulphate. Synergistic effects of the three ion sources was optimized for D. bruxellensis and Z. bailii individually using surface response analysis. Optimized D. bruxellensis YM medium showed no consistent impact on healthy or heat-treated D. bruxellensis strains. On the other hand, two out of the three Z. bailii strains showed significant lag time reduction of 63-66% in untreated cells and 34% in heat-treated cells when incubated in optimized Z. bailii YM medium. The lack of differentiation between improvement of growth of untreated and heat-treated cells point to a generalized ionic deficiency in YM medium. In conclusion, the optimized Z. bailii YM medium is a promising candidate for reducing the detection time of the common spoilage yeast, but it would still require validation with additional Z. bailii strains and quality control samples. It would be also interesting to study the benefits of the medium for cultivation of other spoilage yeasts and in the presence of Z. bailii selective compounds. The information about the importance of various salts for growth of Z. bailii may also prove useful in biotechnological applications of this yeast.
  • Manngård, Jessica (2024)
    Whole grain oats have a high nutritional value and a favorable taste, making oats a valid option to enhance the nutritional properties of food products. Due to the absence of gluten, baking with oat flour can be challenging but lactic acid bacteria fermentation can provide the needed functional activities and modify the sensory properties. The aim of this study was to find lactic acid bacteria (LAB) and yeast starter cultures suitable for oat flour fermentation and define their main metabolic profile. The sourdoughs were prepared with whole grain oat flour and water. Some of these also contained sprouted grain oat and fructose or sucrose to facilitate fermentation. Strains from species Lactiplantibacillus plantarum, Levilactobacillus brevis, and Saccharomyces cerevisiae were used as starters. Microbial enumeration was carried out and acidification was studied by measuring pH and total titratable acidity; organic acid content was analysed with high performance liquid chromatography. The results indicate that there are benefits to using LAB and yeast in consortium to produce oat sourdough, in that they acidify the dough and produce organic acids. The addition of sprouted oat was beneficial, allowing higher acidification and higher organic acid production. Fructose successfully allowed to increase the content of acetic acid. Sensory and baking tests are needed to draw final conclusions on the flavor of the bread.
  • Sgarabotto, Elena (2022)
    In the past 20 years, three known disease emergence events of highly pathogenic coronaviruses have highlighted the importance of monitoring wildlife for the presence of these viruses. Their peculiar characteristics, like high mutation and recombination rate, have increased their potential for species adaptation and interspecies transmission. Understanding the diversity of these viruses in wildlife and increased surveillance might be key to predicting and preventing future spillovers and pandemics. Studies on wildlife coronaviruses commonly focus on the order Chiroptera, mainly in temperate and tropical regions of the Asian continent. Even though animals belonging to this order are considered the main reservoir, the importance of other small terrestrial mammals should not be overlooked. Rodents, for instance, are animals of great interest for many zoonoses, as they often host parasites, bacteria and other groups of viruses that cause diseases in humans. A recent description of several lineages of coronaviruses recovered from rodents from China highlighted and suggested the presence of these viruses in small terrestrial rodents. In this project, we aimed to investigate the presence of coronaviruses in small mammals from France. Samples were collected during spring 2021 in twelve different locations, within two regions of eastern France, Auvergne Rhône-Alpes and Franche Comté. A total of 448 rodents, 13 shrews and 416 bat samples were collected. The samples were screened and coronaviruses sequences were recovered in 20 different samples. Nine Betacoronavirus genus sequences were recovered from rodent colon samples, and one Alpha- and ten Betacoronavirus sequences from bat guano. These results confirmed previous evidence of these viruses’ presence in small mammals from France and provide the first evidence of betacoronaviruses circulating in wild French bats. The study covers two eastern regions that have not been surveilled in previously released studies therefore this highlights the need to increase the efforts in monitoring these viruses and their wildlife host
  • Koivisto, Charlotta (2024)
    Fresh-cut lettuce and cherry tomatoes are products commonly found in ready-to-eat salad mixtures. Their individual deterioration mechanisms are well identified, whereas their interactive effects are not fully known despite their common usage in mixed salads. This hinders the identification of new targets for shelf-life improvement and the understanding of deterioration processes in post-harvest vegetables. This thesis aimed to investigate how fresh-cut lettuce and cherry tomatoes deteriorate in a mixed modified atmosphere packaging and how that impacts the shelf-life of such a product. Visual characteristics, as well as weight loss, sugars, and acid levels, were followed throughout 20 days of storage, and the changes of these prospects were evaluated, reflecting on shelf-life and taste predictions. The results presented here suggest that lettuce spoils faster than tomatoes, as indicated by higher rates of weight loss and sensorial data, thereby implying that lettuce leaves were a limiting factor in the overall quality of the mixed matrices. In addition, the rate of tomato deterioration seemed to slow down in the presence of lettuce, as at the end of the storage, the moisture and hardness losses were smaller in mixed packages. In the first week of storage, weight loss, visual data, texture analysis, and smell did not show evidence of ingredient interaction. In addition, no substantial evidence was found that the ingredients' physical contact affected the deterioration rate in mixed packages. Nevertheless, at late storage, both ingredients showed signs of deterioration, and there appeared to be effects of moisture. Also, importantly, it was found that the presence of tomatoes led to altered sugar metabolism in lettuce. However, this study encompasses only one experimental replicate, but it provides a basis for further research on ingredient interaction in mixed packages and reflects on the next possible avenues to investigate.
  • Kuitunen, Anna (2023)
    Gas chromatography (GC) is one of the most widely used method for analysis of lipids and it is commonly combined to a flame ionization detection (FID), since GC-FID is an excellent combination for quantitative analysis of wide range of lipids. Before GC analysis can be performed, lipids must be extracted from the sample and derivatized. Some common extraction methods include Soxhlet and Soxtec extraction, Folch extraction and extraction with the help of acid hydrolysis. To be able to analyse the extracted fatty acids by GC, they must be in a volatile form. This can be achieved by forming fatty acid derivatives by, for example, methylation. The commissioner wishes to have a way to analyse the fatty acid composition of pork by GC in their laboratory. The aim of the study was to take in use an easy, safe-to-use and simple method for determination of fatty acid composition of pork by gas chromatography, using the instruments and equipment already found from the laboratory. The research had three different parts. First, heptane-isopropanol extraction, Bligh & Dyer extraction and Caviezel extraction were compared. Then the chosen extraction method was validated. Finally, two different pork samples were compared to test the method’s ability to differentiate them. Caviezel extraction was chosen as the best extraction method, and it was validated by parameters repeatability and robustness. The method was able to differentiate samples that had similar, but slightly different fatty acid compositions. However, method still requires some fine tuning since the GC column seemed to be highly sensitive to any disturbances.
  • Andreou, Gregory Michael (2021)
    Understanding the biomes and niches within forest ecosystems is key to maintaining and predicting micro-organism led processes, such as, nutrient recycling and disease proliferation. Insect-vectored fungi occupy the tree bark biosphere as incidental associates. Also, more selective transmission of fungi is seen via the beetle’s specialised structure called the mycangium. Mites carried by these insects, have also been described to vector fungi. Within these fungi are mycoviruses that express cryptic, beneficial, or detrimental effects to the host. The positive and negative effects on fungal host phenotypes encourage investigations into unknown virospheres. A study into the distribution of mycoviruses within bark-beetle vectored fungi in Finnish forests has yet to be carried out. The master’s thesis work continued an evaluation of viromes from 52 forest, bark-beetle vectored, fungal isolates transformed into 4 RNA libraries via high throughput sequencing platforming, using Illumina chemistry. Scots pine, Pinus sylvestris, and Norway spruce, Picea abies, logs were sampled. A further 31 fungal isolates were screened, via RT-PCR, for 22 putative viral sequences recovered from the RNA libraries. Patterns in viral sequence host range, co-infectivity and similarities between viral sequences were investigated. The viral sequences described in this study were unique to the databases searched against and could be looked at when maintaining the Finnish forest ecosystem. It was shown that positive-sense ssRNA viruses could play a major role in the virome of bark-beetle vectored fungi as 77.3 % of viral sequences described were classified as so. Mitovirus infections were most frequent across the two forests and, the interspecies-infective Ophiostomatoid mitovirus 2 strain was seen to infect at least four species, across two fungal genera. The description of Kuraishia capsulata narna-like virus 1 showing RNA dependent RNA polymerases (RdRp) across 2 genomes segments, supports current growing evidence, which in turn could contribute to the new classification of viruses within the Narnaviridae family.
  • Laitila, Tiina (2022)
    Aflatoxin B1 (AFB1) is a naturally occurring toxic compound produced by various types of fungi. The presence of AFB1 in food and feed can lead to severe illness, which makes it a serious threat to humans and animals. Due to global climate change, the cases of AFB1 contamination in food will increase since high temperature and humidity favour fungal growth and the production of AFB1. The bioavailability of AFB1 can be decreased by adsorption or biotransformation. Adsorption happens by the utilization of different AFB1 binding agents, which can be either mineral and organic or biological adsorbents. Mineral and organic adsorbents are only used in feed since they may also bind to nutrients. Biological adsorbents are being studied more actively since they maintain the nutritional value of the food. Studies show that Lactic acid bacteria (LAB) can be used to bind AFB1 from contaminated foods. The aim of this research was to study the capacity of different LAB (viable and nonviable) to adsorb (bind) AFB1 under different pH conditions. The research first evaluated the binding ability of AFB1 by 13 viable and nonviable LAB strains at pH 7. The best binding strains were selected for further study at pH 3 to mimic gastric pH. The AFB1 binding with cells was performed at 25℃ for 90 min. To determine the binding capacity, the solutions were centrifuged and free AFB1 in the supernatant was extracted with acetonitrile, and quick, easy, cheap, effective, rugged, and safe (QuEChERS) method was used to clean up the samples. AFB1 concentration was determined by ultra-performance liquid chromatography and fluorescence detection (UPLC-FLD). The LAB strains used in this research were shown to have the ability to bind AFB1. Binding efficacy of AFB1 depended on the bacterial strain. Viability and pH also affected the binding ability. All nonviable cells showed better binding ability (44.9–71.3%) compared to the viable cells (29.0–49.4%). The strains also had better binding capacity at lower pH regardless of the cell viability. The highest binding efficacy (71.3%) was achieved by the nonviable cell of Lactobacillus helveticus FAM 22155 at pH 3. The results of this thesis showed that some LAB strains bind AFB1 and that the binding is stable under stomach conditions. Studies to investigate the stability of the binding under simulated upper and lower gastrointestinal (GI) tract conditions (in vitro digestion) and in vivo studies are needed in order to provide further evidence of the applicability of LAB in lowering the bioavailability of AFB1.
  • Paananen, Saana (2022)
    This master thesis aimed to develop a calibration model of the whipping cream for FTIR spectrophotometer MilkoScanTM FT3 and identify the effects of disruptive factors on whipping cream measurement. In the previous calibration model of whipping cream, there could be improvements in the level of the results, especially for lactose. The experimental part of this research included the development of a calibration model, calibration of lactose, total solids assay, and calculation of measurement uncertainty. The calibration model was developed utilizing the statistical methods PCA and PLS in the FossCalibrator program. Lactose calibration was carried out with the LactoSens method, utilizing whipping cream and α-D-lactose, and the results from the reference laboratory were used as reference. The accuracy and functionality of the calibration of total solids wanted to verify, which was why the experimental part included the total solid assay. Total solids were determined by a gravimetric method, and the results were compared with those of the reference laboratory. The measurement uncertainty of the calibration model was calculated with the results of the whipping cream sample reproducibility, repeatability, and accuracy. The new calibration model of whipping cream was verified utilizing validation samples, and the check results were at the expected level. The result of lactose calibration was considerably more accurate than the previous model. The total solids result from the gravimetric method varied slightly with the FT3 results, which, however, did not affect practically. The measurement uncertainty was relatively good, but the calculation will be improved as the number of reference results increases. The main subject of this research was achieved, i.e., the development of the calibration model was successful. The research on the disruptive factors was less than initially intended.
  • Dirks, Anna (2021)
    Antibiotic resistance is an increasing, terrible threat to human health, leading to a growing need for alternative therapies. Phage therapy, using bacterial viruses to fight infections, is a promising alternative to antibiotic therapy. However, several obstacles need to be overcome. Regrettably, phage therapy remains inaccessible to many laboratories worldwide due to the need for expensive machinery to establish sensitivity of bacteria to phage. Moreover, shipping phages between laboratories remains challenging. In the current study a device-free bacteriophage typing PhagoGramAssay was developed. In the assay bacteria suspended in soft agar were poured onto a 60-well Terasaki plate containing phages suspended in fibrillated nanocellulose separated from the bacteria by a seal. Phages were released into the bacterial agar layer by puncturing the seal to test for sensitivity observable with the naked eye. Contrast between lysis zone and bacterial lawn was enhanced using 2,3,5-triphenyltetrazolium chloride. Optimized parameters included the amount of bacteria and phage added, volume of phage suspension, agar percentage and thickness and puncturing tool size. In addition, a prototype of such a puncturing tool was developed. The optimized PhagoGramAssay was tested using several bacteria-phage combinations. Moreover, infectivity and stability of phages stored on Terasaki plates was followed over the course of 4 weeks. The optimal bacterial amount added was found to be a 1:300 dilution in soft agar taken from a OD600 = 1 culture. Phage suspensions used in the assay were found to need to have a titer of at least 108 PFU/ml in the original lysate, with 8 µl of 1:10 dilution in fibrillated nanocellulose present in the wells. Optimal agar conditions were found to be 0.4% – 0.5% (w/v) with a thickness of 2 mm – 3 mm. The optimal puncturing tool shape was found to be a slit with a thickness of 0.5 mm. When using these conditions sensitivity could be established for a vast number of bacteria-phage combinations. All phages remained stable and infective over the course of 4 weeks . The newly developed PhagoGramAssay can be further developed into a kit-like phage typing assay that would enable laboratories to test for sensitivity on site whenever a multi-drug resistant bacterial strain is isolated from a patient sample, effectively making phage therapy accessible to laboratories that cannot afford expensive machinery. Additionally, the use of fibrillated nanocellulose should enable laboratories to exchange phages. The final form of such a kit, however, is dependent on manufacturers and investors and may need to be adjusted accordingly.
  • Elfving, Karoliina (2022)
    Catcher-protein and Tag-peptide originate from split CnaB domains of Gram-positive bacteria surface proteins, which are stabilized by spontaneous intramolecular isopeptide bonds formed between lysine and asparagine residues. However, there is a limited number of non-cross-reacting Catcher and Tag pairs available where the reaction occurs close to the diffusion limit, and which can be used in multiple fragment ligation to construct recombinant fusion proteins. Therefore, a new Catcher/Tag system – LplCatcher/LplTag – was developed in our group from CnaB domain of Lactobacillus plantarum. However, the ligation efficiency of this pair needs to be improved to expand the application possibilities. Therefore, there is a need for efficient library screening method, which allows to detect improved protein-peptide pairs where the covalent interaction takes place rapidly. In this study a new high-throughput in-vivo screening system was developed for visualizing the ligation of Catcher/Tag fusion proteins using splitFAST fluorogenic reporter system for detecting the phenotype, and Fluorescence-activated cell sorting (FACS) for separating the variants at single cell level based on fluorescence intensity. splitFAST is a system engineered by splitting a fluorescent protein named Fluorescence-Activating and absorption-Shifting Tag (FAST) into CFAST and NFAST. The system can be utilized in visualizing the protein interactions because once NFAST and CFAST associate, in the presence of a fluorogen, they form the active and highly fluorescent FAST protein. Herein, Catcher-protein was fused with CFAST and Tag-peptide with NFAST, which allowed detecting the Catcher-Tag ligation ratio based on fluorescence with splitFAST system. Next, a screening system was developed for detecting Catcher variants with improved ligation efficiency. The developed high-throughput screening system showed high potential since visualizing the protein ligation was possible, and hence the system could help in expanding the Catcher/Tag toolbox by allowing large mutant library analyzes.
  • Kazerani Garcia, Afsane Aurora (2021)
    Non-communicable diseases such as cardiovascular diseases (CVDs) and erosive, unsustainable industrial fat-production methods pose two of the biggest threats to human health in great part of our planet. CVDs and obesity have been linked to diets high in fat and low in dietary fibre, pushing food manufacturers to adapt to more sustainable ingredients. For this reason, this research developed and researched about a new and sustainable plant-based oleogel intended to act as a substitute for saturated and hydrogenated fats. Its characterization was conducted through several techniques, including optical and field emission electron scanning microscopy, differential scanning calorimetry, Fourier transmission infrared spectroscopy, and synchrotron X-ray powder diffraction. The results showed that the build-up of the formation of the new oleogel was possible, while ensuring that both processing requirements and ingredients are readily available at food manufacturing plants, globally. These findings pose a great opportunity for plant-based fat-replacement formulations, through a sustainable approach. Considering previous studies, this novel system could potentially help in reducing the burden of obesity and CVDs, turning it into a functional food component. Further research on food applications and digestibility models could give more insight on the future applications of this fat-replacement system.
  • Salminen, Petja (2023)
    Coronavirus disease 2019 (COVID-19) is still considered a global pandemic with novel immunoevasive variants constituting a potential threat to life for many susceptible individuals. Despite successful vaccination programmes, which ensued in early 2020, spread of the virus is still an unresolved issue. To address this, innovative prophylactic approaches are being continuously investigated to target the causative agent of COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Prevention of infection primarily focuses on the targeting of the receptor-binding domain (RBD) on the spike protein of SARS-CoV-2, which is used to infect host cells presenting angiotensin-converting enzyme 2 (ACE2) on their surface. In 2023, a novel antibody mimetic targeting scaffold, namely the sherpabody platform (SH3; src-homology 3; Recombinant Protein Affinity), was introduced. Accordingly, an intranasally administered, RBD targeting trimeric sherpabody, TriSb92, was demonstrated to prevent infection by SARS-CoV-2 and its recent variants of concern by targeting a conserved region within the spike RBD in vitro and in vivo. This study was performed to further investigate and develop the use of sherpabodies in SARS-CoV-2 prophylaxis. Various homo- and heteromultimeric constructs were assembled and the efficiency of their bacterial production was assessed. Additionally, their functionality, specificity and avidity was analysed. Specifically, the combination of different functionalities within a single molecule – receptor blocking and fusion prevention – was studied. Newly discovered RBD-targeting sherpabodies assembled into multimers were able to neutralize SARS-CoV-2 variants, including the latest Omicron subvariants BA.2.75.2 and XBB.1.5. These multimeric sherpabodies were shown to be easily manufacturable, highly target-specific and multifunctional when desired, making them excellent candidates for intranasally administered SARS-CoV-2 prophylaxis.
  • Mäki, Oona (2024)
    The porcine gut microbiome is a complex mixture of diverse microbes. During some diseases, the microbial balance of the gut can be disturbed, and harmful bacteria might multiply to concentrations that are harmful to health. To restore balance, the increase of beneficial bacteria that have probiotic potential plays a big role in avoiding the use of antibiotics. In order to develop a probiotic product containing these beneficial bacteria, it is necessary to concretely isolate them from a fecal sample. In this pilot study, the aim was to find an optimal selective growth medium that would allow to grow bacterial species with probiotic properties serving as a potential product in pigs and which would reduce the growth of redundant bacteria. A total of 12 different media were tested with four different sole carbon sources in M9 minimal salts, of which four being supplemented with volatile fatty acids were further tested. The results suggest that cellobiose or xylose could be the best alternatives of the investigated carbon sources for the species of interest. In addition, it was found that certain volatile fatty acids can inhibit the growth of Escherichia coli and several species of the genus Bacteroides.
  • Törnroos, Tatu (2021)
    Cowpea (Vigna unguiculata) is one of the most important legumes in the world due to its high nutritional content. Its nutritional value is, however, hindered by different anti-nutrients, such as phytic acid (PA), which can lower the bioavailability of minerals and proteins. PA is a nutritionally significant compound found in many plant materials, such as cereals and legumes. PA is myo-inositol-1,2,3,4,5,6-hexakis dihydrogen phosphate (IP6) by chemical nomenclature. Measurement of PA is challenging, due to its high charges and its low content, amongst other factors. The primary aim in the thesis was to create an accurate, selective, and sensitive UPLC-QTof-ESI-MS method for quantification of PA from legumes, cereals, and other plant materials. The secondary objective was to determine PA content in raw, fermented and phytase-treated white cowpea flour and investigate the effectiveness of the processing methods on PA hydrolysis. PA content in white cowpea has been previously determined with methods lacking the capability to directly measure only PA content, without also adding in the concentration of smaller inositol phosphates (InsP) or other phosphorus containing compounds. Therefore, the presumption was that the measured PA concentration should be lower when using the selective UPLC-QTof-ESI-MS method. Besides white cowpea flour, the concentration of PA in red cowpea, wheat bran, sorghum, wheat fraction and rapeseed protein concentrate flours was also measured to investigate if the method works for other plant matrices as well. The sample preparation method consisted of two-hour extraction in 0.5 M HCl, a neutralization step, lyophilization, reconstitution with 5% MeOH and addition of adenosine 5′-monophosphate monohydrate (AMP) as internal standard. The samples were then analyzed with UPLC-QTof-ESI-MS, with electrospray ionization on negative ion mode (ESI-). The PA quantification method had excellent precision, selectivity, repeatability, and linearity (R2 = 0.991). Accuracy was good and the recovery of 100% resulted in a high level of trueness. The LoD was determined as 3.22 µg/mL but could be possibly lowered. The PA content in white cowpea flour was 5.91 mg/g dry weight. As was presumed, this result was lower than previously reported in literature. The method was also relatively suitable for the other plant samples. However, wheat fraction, rapeseed protein concentrate, and sorghum flours gave unexpected results. In the fermented sample the PA content was 3.30 mg/g and in the enzyme-treated 0.09 mg/g (or 12.4 µg/mL). However, the fermentation and enzymatic treatments did not reduce the PA concentration under the threshold of <3.3 µg/mL, where iron cation chelation still strongly takes place. The processing method could be improved by increasing the phytase dosage or increasing the reaction times to achieve higher hydrolysis of PA.
  • Palsola, Mira (2022)
    African crops are sustainable and healthy alternative ingredients for potential use in various gluten-free products among traditional African foods. In this thesis maise-based, gluten-free crackers with 50% cereal (amaranth, sorghum and teff) and 50% and 75% legume (Bambara groundnut and cowpea) replacements were produced, and their baking performance and technological properties were examined. The effect of sorghum and cowpea flour's bioprocessing and mechanical raw material modifications on cracker technological and sensory properties was studied. The thesis aimed to solve whether maise and African crop flours could be used in gluten-free crackers and how would they affect nutritional values, baking performance and technological and sensory properties in gluten-free crackers. The nutritional calculations indicated that African crop replacement increased fibre content at least by 2.4% and protein by 1.9 E% compared to 100% maise cracker. Crop replacements improved the dough elasticity and bakability and darkened the cracker surface. African crops and higher protein content increased cracker hardness and improved the rising ability. The highest hardness rate was measured with protein fractionated cowpea (31.55 ± 3.17 N, maise 4.02 ± 1.79%) and puffiness with Bambara groundnut 75% (43.57 ± 3.29%, maise 21.93 ± 0.002%). Raw material modifications changed the sensory profile of sorghum and cowpea crackers significantly by decreasing graininess in sorghum and beaniness in cowpea.
  • Mukhtar, Fezan (2022)
    Lactobacilli especially Limosilactobacillus reuteri’s strains inhabit the GI tract of humans with glycerol/diol dehydratase activity metabolizing glycerol and producing a broad-spectrum antimicrobial system called reuterin. It consists of 3-hydroxypropanal (3-HPA), acrolein, and its derivatives. Due to the toxic activity of ubiquitous acrolein, an analytical toolbox to determine acrolein formation by food cultures is needed. We developed assays to estimate microbial formation of acrolein using a colorimetric method based on tryptophan and a fluorescence-based approach with 2-amino-1-methyl benzimidazole (AMBI) as a probe. We compared tryptophan and AMBI-based quantification of reuterin produced by resting cells or during the growth of Lb. reuteri DSM 20016. With 600 mM glycerol, resting cells produced 329 ± 35 mM 3-HPA as quantified by HPLC-RI, and 390 ± 13 mM of 3-HPA/acrolein based on the colorimetric method with 3-HPA as standard. Acrolein (40 ± 11 mM) was detected using an AMBI probe. We also detected 3-HPA and acrolein formation during the exponential growth phase in the presence of 50 mM glycerol in different media. Also, as acrolein induces redox stress, redox potential and sensitivity to reuterin/acrolein of the engineered green fluorescence protein (roGFP2) were determined. Ultimately, the roGFP2 gene was tried to clone in E. coli (JM109) using the pTH1mp constitutive expression vector to establish as a biosensor for acrolein detection. Our results suggest that quantification of acrolein by fluorescence-based approaches and biosensors constitute novel methods to estimate any risk of acrolein formation in presence of glycerol/diol dehydratase-positive microbes and glycerol during food fermentation.