Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Author "Uusitupa, Jenni"

Sort by: Order: Results:

  • Uusitupa, Jenni (2021)
    Tiivistelmä  Referat  Abstract Lettuce (Lactuca sativa L.) may accumulate high amounts of nitrate in the hydroponic NFT-cultivation system. Accumulation is known to increase under low light conditions, and thus high nitrate content causes problems in year-round lettuce production in Finland. Nitrate is classified as a harmful food additive, and the regulation (194/97) of the European Commission requires the Member States to monitor the nitrate content of commercial lettuce. Hence, to control the nitrate content, farmers have requested an efficient method that does not shorten the shelf-life or negatively affect the quality of lettuce. In the earlier studies, root-applied glycinebetaine (GB) was shown to reduce lettuce nitrate content and increase the contents of amino acids and minerals. The present study aimed to investigate, whether glycinebetaine can serve as a precise method to control lettuce nitrate content in commercial-scale greenhouse production. Glycinebetaine 10 mM was applied into the nutrient solution twice at three days intervals, and lettuce was exposed to treatment during the last six growing days before the harvest. Plant samples were collected every second day for 14 days after the first GB application, and samples from nutrient solution were collected simultaneously. The reduction of GB from the nutrient solution was monitored. The fresh weight of the plants was weighed during the harvest, and contents of nitrate, dry matter, minerals, amino acids, and GB in the plant samples were analyzed. Root-applied GB reduced lettuce nitrate content by over 29 % in comparison to control plants. The total contents of hydrolyzed- and free amino acids were increased. The total content of essential amino acids was increased up to 14 % following the GB treatment. Also, the contents of minerals in the lettuce leaves were altered. The potassium (K+) content in lettuce was reduced by over 40 % after GB application. Lettuce accumulated the applied GB and leaf GB content was 7 mg kg-1 fresh lettuce at the highest. Root-applied GB reduced the fresh weight of the harvested lettuce, but all plants reached the commercial size (>100 g) during the typical commercial growing period of 41–43 days. The result of the present study proved that GB is a practical method to control nitrate content and the quality of lettuce on commercial-scale lettuce production. Glycinebetaine was detectable in the nutrient solution for three days after application and thus, continuously maintained lower nitrate content in plants requires continuous GB application in the commercial lettuce production. The reduction of the nitrate content was significant six days after the first GB application, which indicates that a six-day treatment period is required.