Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "carbon dioxide"

Sort by: Order: Results:

  • Rutanen, Aino (2020)
    Global warming caused by the warming effect of greenhouse gases (GHGs) induces permafrost thaw, which could alter Arctic ecosystems from prominent carbon sinks to potential sources of GHG emissions when polar microorganisms become metabolically more active and have access to carbon compounds that were previously largely unavailable. Polar microbes can have significant contributions to the growing emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) and therefore, studies on their metabolism are important. The aim of my study was to investigate polar microbial community composition and diversity as well as functional potential that was related to GHG-cycling in a subarctic environment with genome-resolved metagenomics. Soil cores were collected at the Rásttigáisá fell that is located in Northern Norway. After DNA extraction, ten mineral soil samples were sequenced. Metagenome-assembled genomes (MAGs) were reconstructed using either the combination of human-guided binning and automatic binning or human-guided binning only. Taxonomy was assigned to the MAGs and the functional potential of the MAGs was determined. I recovered dozens of good-quality MAGs. Notably, the MAGs from the mostly unknown phyla Dormibacterota (formerly candidate phylum AD3) and Eremiobacterota (formerly candidate phylum WPS-2) were reconstructed. There were MAGs from the following bacterial phyla as well: Acidobacteriota, Actinobacteriota, Chloroflexota, Gemmatimonadota, Proteobacteria and Verrucomicrobiota. In addition to the bacterial MAGs, MAGs from the group of ammonia-oxidizing archaea were recovered. Most of the MAGs belonged to poorly studied phylogenetic groups and consequently, novel functional potential was discovered in many groups of microorganisms. The following metabolic pathways were observed: CO2 fixation via the Calvin cycle and possibly via a modified version of 3-hydroxypropionate/4-hydroxybutyrate cycle; carbon monoxide oxidation to CO2; CH4 oxidation and subsequent carbon assimilation via serine pathway; urea, ammonia and nitrite oxidation; incomplete denitrification as well as dissimilatory nitrate reduction to ammonium. My study demonstrates how genome-resolved metagenomics provides a valuable overview of the microbial community and its functional potential.
  • Poutamo, Helinä (2019)
    Peatlands are significant pools of carbon and nitrogen. Forestry-drained peatlands have lower methane emissions than undisturbed peatlands, but emissions of carbon dioxide and nitrous oxide increase after ditching. The effect of ditching on the emissions of peat is stronger on nutrient-rich peatlands than on nutrient-poor peatlands. However, the growing vegetation and wood production form a large carbon sink. So far, forestry-drained peatlands have mainly been carbon sinks in Finland. There are 4.6 million hectares of forestry-drained peatlands in Finland. Ditching peatlands for forestry started in the beginning of the 20th century, and was on its height from 1960s to 1980s. Forestry-drained peatlands are reaching maturity now, but there is little knowledge about the effect of forest management practices on greenhouse gas emissions from forestry-drained peatlands. The purpose of this study is to investigate the effect of logging residues on emissions of carbon dioxide, methane and nitrous oxide from forestry-drained peatlands. Greenhouse gas emissions were measured from the nutrient-rich peatland Lettosuo in Tammela that was drained for forestry in 1969. In early spring of 2016, dominant pine trees were harvested to make room for spruce undergrowth. During the harvest, the harvester formed piles of logging residues on its tracks to avoid erosion of the soil. Five plots were established and measurements taken with the closed-chamber method during 2016-2017. On each of the five plots, two chamber collars were installed on the machine’s tracks, full of logging residues, and other two collars were installed outside of the tracks with little to no logging residues. In addition to greenhouse gas emissions, the dry mass of the logging residues, temperature and groundwater level were measured. Carbon dioxide emissions from residue-covered collars was measured at 0.81–0.88 g m-2 h-1. The fluxes were 1.5-2 times larger than on the control collars (0.40–0.54 g m-2 h-1). A kilogram of logging residues raised the emissions by 0.10 ± 0.01 g m-2 h-1. Compared to the dry mass of branches, the dry mass of needles increased the emissions fourfold. On plots 1-4, the collars installed in the groove of the harvester’s tracks were the only sources of methane by 0.0055 mg m-2 h-1. The methane flux of the other collars varied between -0.0035 and 0.0136 mg m-2 h-1. A kilogram of logging residues raised methane fluxes by 0.003 ± 0.001 mg m-2 h-1. Again, the effect of needles was quadruple as compared to branches. Plot #5 was investigated separately due to the Eriophorum vaginatum that had grown inside the collars. On all plots, nitrous oxide emissions didn’t significantly differ from collar to collar, even though emissions measured from logging-residue covered collars (0.20–0.30 mg m-2 h 1) were two to three times larger than on the other collars (0,10 mg m-2 h-1). Logging residues and the mechanical impact of the harvester on the peat soil increase emissions of carbon dioxide and methane. Emissions of nitrous oxide also increase, but the variance of measured emissions and the small sample size rendered the results statistically insignificant.
  • Niskanen, Marko (2016)
    Climate change, global warming and depleting fossil fuel reserves together with the globally increasing energy consumption have resulted in a need for new carbon neutral technologies to produce and store renewable energy. Microbiologial methanation of hydrogen and carbon dioxide is a promising carbon neutral technology to store renewable electricity as methane gas. Methane has the largest temporal and quantitative energy storage capacity of all the current energy storage pathways. There is also a globally increasing demand for carbon neutral transportation fuels and methane gas can be utilized in the existing natural gas infrastructure and combustion engines. The aim of this thesis was to study the methanation of hydrogen and carbon dioxide in a new type of a fixed bed reactor. A reactor in volume of 4 l was packed with support mixture consisting of vermiculite and perlite. Peak methane production rate of 0.15 l CH4 / h / 1 l reactor volume was achieved while the peak treatment power was 1.6 W / l. Hydrogen conversion rate during these achieved peak numbers was 25 %. Higher hydrogen conversion rate of 92 % was achieved in a stable operaton while the methane production rate was 0.03 l l CH4 / h / 1 l reactor volume and treatment power was 0.35 W/l. A simple and cost effective reactor structure for methanation of carbon dioxide and hydrogen is a promising way to store renewable energy and produce carbon neutral transportation fuels. Stable operation with high methane production rates and optimization of the reactor remains to be achieved. Present study was a part of a larger research project of the Natural Resources Institute Finland regarding the fixed bed reactor technology.
  • Azizkhani, Mohammad (2020)
    Brewer's yeasts metabolize sugars and produce ethanol and CO2. This study aimed to investigate the relation between the assimilation of sugars in all-malt wort and isotopic signature of carbon and oxygen in the evolved CO2 from brewery fermentations. The isotopic composition of CO2 was measured by a tunable diode laser absorption spectrometer. The isotopic data obtained with automatic sampling, on-line, and in real-time. Wort samples were collected with 3 h intervals to quantify the residual sugars by high-performance liquid chromatography. Patterns of changes in δ13C and δ18O values were unique to experiments with each yeast type. The common overall ascending trend in δ13C and δ18O values in all experiments can be described by kinetic fractionation of isotopes, which explains that in a bioreaction the lighter isotopes participate in the reaction more readily than the heavier ones. Therefore, the early emergence of light isotopologues of CO2 may be a consequence of the fermentation of light isotopologues of sugars. A sudden decrease and then increase in delta values were observed in all experiments before the residual concentrations of glucose and fructose reach their lowest levels. This can be an indicator of the complete assimilation of monosaccharides by yeast. In the fermentations that yeast was able to consume maltose, δ13C and δ18O values raised considerably in a short period. Concurrently, maltose approached its eventual residual concentrations indicating an endpoint for its utilization by yeast. Our results confirm the hypothesis of a connection between the assimilation of sugars and the isotopic signature of evolved CO2 during brewery fermentations. The findings support the potential of off-gas isotopic analysis to monitor sugar assimilation in brewery fermentations.
  • Johnson, Christopher (2013)
    Experimental warming provides a method to determine how an ecosystem will respond to increased temperatures. Northern peatland ecosystems, sensitive to changing climates, provide an excellent setting for experimental warming. Storing great quantities of carbon, northern peatlands play a critical role in regulating global temperatures. Two of the most common methods of experimental warming include open top chambers (OTCs) and infrared (IR) lamps. These warming systems have been used in many ecosystems throughout the world, yet their efficacy to create a warmer environment is variable and has not been widely studied. To date, there has not been a direct, experimentally controlled comparison of OTCs and IR lamps. As a result, a factorial study was implemented to compare the warming efficacy of OTCs and IR lamps and to examine the resulting carbon dioxide (CO2) and methane (CH4) flux rates in a Lake Superior peatland. IR lamps warmed the ecosystem on average by 1-2 oC, with the majority of warming occurring during nighttime hours. OTC's did not provide any long-term warming above control plots, which is contrary to similar OTC studies at high latitudes. By investigating diurnal heating patterns and micrometeorological variables, we were able to conclude that OTCs were not achieving strong daytime heating peaks and were often cooler than control plots during nighttime hours. Temperate day-length, cloudy and humid conditions, and latent heat loss were factors that inhibited OTC warming. There were no changes in CO2 flux between warming treatments in lawn plots. Gross ecosystem production was significantly greater in IR lamp-hummock plots, while ecosystem respiration was not affected. CH4 flux was not significantly affected by warming treatment. Minimal daytime heating differences, high ambient temperatures, decay resistant substrate, as well as other factors suppressed significant gas flux responses from warming treatments.