Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "nanofibrillated cellulose"

Sort by: Order: Results:

  • Alakalhunmaa, Suvi (2014)
    Aerogels are lightweight, porous and dry foams that are produced from gels by replacing the liquid phase by air. When produced from polysaccharide-based hydrogels, potential applications for aerogels could be found as bio-based packaging materials. The literature review focused on the production of polysaccharide-based hydrogels and their chemical crosslinking, as well as the production of aerogels and their properties. In the experimental study the possibilities for utilization of spruce galactoglucomannan (GGM), an abundant but largely unexploited raw material, as aerogel matrix was explored. Nanofibrillated cellulose (NFC) was used as reinforcement and the polysaccharides were crosslinked with ammonium zirconium carbonate (AZC). Hydrogels were prepared from GGM-NFC-suspensions and heat treatment was performed in order to induce crosslinking reaction. Prepared hydrogels were frozen in a bath of carbon dioxide ice and ethanol and subsequently freeze-dried into cubic aerogels. The aim was to investigate the effect of polysaccharide proportions and AZC content on the strength of hydrogels and on the mechanical properties and moisture sensitivity of aerogels. The formation of crosslinks was observed indirectly from the values of storage and loss moduli by dynamic rheological measurement. The strength of hydrogels was highly dependent on the AZC and NFC content. In contrast, the compressive modulus of aerogels instead was affected only by NFC content at relative humidity (RH) of 50% and 23 °C. Hydrogel strength could not be used for prediction of aerogel strength under these ambient conditions. AZC and NFC mainly decreased the sensitivity of aerogels towards moisture by decreasing the water absorption and its plasticizing effect on aerogels. The effect of crosslinking on mechanical and physical properties of aerogels appeared clearly at RH over 50%. GGM was shown to be a suitable aero-gel raw material when combined with NFC. The role of NFC in enhancing the aerogel’s me-chanical properties was significant. The mechanical properties of uncrosslinked aerogels, how-ever, weakened in a humid environment. In particular, AZC is needed to protect aerogels from the plastizicing effect of water. Properties of crosslinked aerogels in a humid environment would be an interesting subject of further studies.