Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "validation"

Sort by: Order: Results:

  • Haajanen, Hanna (2020)
    3-Chloro-1,2-propanediol (3-MCPD), 2-chloro-1,3-propanediol (2-MCPD) and 2,3-epoxy-1-propanol (glycidol) and their fatty acid esters are contaminants formed during processing fat containing foodstuffs at high temperatures. Mainly MCPD and glycidyl esters have been found to be formed in the deodorization process of oils, and in vegetable oils, such as palm oil, they have been measured at high concentrations. In accordance with the restrictions imposed by the European Commission, the levels of glycidyl esters must be especially monitored, as they have been identified as potentially carcinogenic compounds. The aim of the study was to introduce and validate a gas chromatographic analysis method for glycidyl esters and MCPD esters for the Customs Laboratory. The method was validated for two matrices: first for oils and then for powdered infant formulas. In addition, the success of the validation was examined by analyzing various oil samples previously received by the Customs Laboratory. The Customs Laboratory is also involved in the activities of the European Union Reference Laboratory, for which it was intended to participate in the reference measurement organized by the EU Reference Laboratory. The method for the determination of 3-MCPD, 2-MCPD and glycidyl esters in oils and infant formulas was carried out according to the guidelines of the European Union Reference Laboratory for Contaminants (EURL-PC). Determination of MCPD and glycidyl ester concentrations in oils and infant formulas included the following steps: fat extraction by liquid-liquid extraction (for infant formulas), addition of standards, solid-phase extraction, conversion of glycidyl esters to 3-MBPD esters, transesterification, neutralization, salting out, derivatization and analysis with gas chromatography-mass spectrometry system. Concentrations were determined using internal standard method. The method was validated for the following parameters: specificity, selectivity, limit of detection and quantitation, reproducibility, repeatability, trueness, linearity and working range, stability and measurement uncertainty. The analytical method developed for the determination of MCPD and glycidyl esters was successfully validated for oils and powdered infant formulas. The developed method proved to be specific and selective. The limit of determination was found to be 6.3 µg/kg, 1.3 µg/kg and 0.8 µg/kg for the oil matrix 3-MCPD, 2-MCPD and glycidyl esters. The limits of determination for the infant formula were 5.4 µg/kg, 3.0 µg/kg and 1.6 µg/kg for 3-MCPD, 2-MCPD and glycidyl esters. Recoveries for MCPD and glycidyl esters in the oil and powdered infant formulas were 83-105%. R2 for calibration lines were greater than 0.99, and the lines were linear over the entire measurement range of 2-1000 µg/kg. The relative standard deviation of repeatability and reproducibility was less than 20% for both matrices. The expanded measurement uncertainty for the MCPD and glycidyl esters of the oil and powdered infant formula was less than 50%. For all parameters, the requirements set by the Customs Laboratory and the performance requirements of Regulation (EU) 1881/2006 were met. A method validated for two matrices can then be accredited. The customs laboratory may use the developed method in the future to control 3-MCPD, 2-MCPD and glycidyl esters levels of oils and powdered infant formulas. In the future, the method could also be validated for new matrices, such as liquid infant formulas.
  • Syvähuoko, Jenna (2015)
    The literature review focused on the chemical properties of Fusarium mycotoxins and their masked forms, analytical methods for their determination and the toxicological and legislative aspects. In the experimental study, a multi-method was developed and validated for the simultaneous quantification of several Fusarium toxins and their masked forms in barley, oats and wheat using liquid chromatography-tandem mass spectrometry (LC-MS/MS) technique. The simple “dilute-and-shoot” sample preparation procedure was applied, where the extraction was performed with a mixture of acetonitrile, water and acetic acid (79:20:1, v/v/v). Moreover, the aim was to obtain new data on the occurrence of the masked mycotoxins in barley, oats and wheat by analysing 95 cereal grain samples. The type A trichothecenes T-2 and HT-2 toxins (T-2 and HT-2) and the type B trichothecenes deoxynivalenol (DON) and nivalenol (NIV) as well as zearalenone (ZEN), together with 11 masked forms of them, were included based on their importance for the food safety in northern Europe. The analytes were separated on a reversed-phase column and detected in selected reaction monitoring (SRM) mode. Better peak shapes for the early eluting compounds and shorter analysis time were obtained with acetonitrile than methanol as the organic phase, thus it was chosen for the method. The method was validated according to the criteria set in the legislation. The limits of quantification varied from 0.3 to 15.9 ?g/kg. The recoveries were 92?115%, thus being within the tolerable ranges established in the legislation. The inter-day precisions (4?27%) were under the maximum permissible values. Therefore, the method proved to fit for the purpose. In this study, occurrence data on the masked mycotoxins in Finland were obtained for the first time. The presence of ZEN-16-glucoside (ZEN-16-G) and NIV-3-glucoside (NIV-3-G) were reported for the first time worldwide in some of the cereals. The most frequently found toxins were DON, NIV and HT-2. All of the masked mycotoxins included in the method were determined, the most common being DON-3-glucoside (DON-3-G), HT-2-glucoside (HT-2-G) and NIV-3-G.
  • Tauriainen, Tuuli Kyllikki (2021)
    Mycotoxins are toxic secondary metabolites of fungi which have adverse health effects on humans and animals. Among the mycotoxins, aflatoxin B1 (AFB1) and fumonisin B1 (FMB1) are one of the biggest threats to food safety and often co-occur in cereals with possible synergistic toxic effects. Due to the climate change, it is predicted that mycotoxin-producing fungi will spread in their geographical distribution and consequently threaten food quality and availability to a whole new level. The aim of this study was to optimize and validate an in-house quantification method for AFB1 and FMB1 in cereals using wheat bran as a representative matrix for matrix-matched calibration. The method was based on ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) using the multiple reaction monitoring (MRM) technique for quantification. AFB1 and FMB1 were extracted with 70% acetonitrile containing 1% formic acid using horizontal shaking for 30 min. The purification was done using hexane and the QuEChERS method. The chromatographical separation of mycotoxins was performed in Acquity UPLC BEH C18 column and the detection was carried out with a quadrupole time-of-flight (QTOF) mass spectrometer. AFB1 showed a severe ion suppression (matrix effect: 20%) and FMB1 a slight ion enhancement (matrix effect: 108%) in the wheat bran matrix. These alterations of the ionization were successfully compensated by 13C-labeled internal standards and matrix-matched calibration. Quantification was performed by considering the peak area ratio and concentration ratio of the target analyte (AFB1 and FMB1) and its internal standard. Both AFB1 and FMB1 showed good linearity (R2 ≥ 0.995), high recoveries (89-92%) in spiking experiments and the low relative standard deviation within and between different days (3.3-6.9%). The method quantification limit was 1.0 ng/g for both mycotoxins. Uncertainty of the analysis for FMB1 in reference material was 644 ± 86 ng/g (k = 2, providing an approximate 95% confidence level when normal distribution was assumed). The validated LC-QTOF-MS method using wheat bran as a representative matrix fulfilled the performance criteria of Commission Regulation (EC) No 401/2006 and showed good performance for oat bran and maize flour.