Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by master's degree program "Materiaalitutkimuksen maisteriohjelma (Materials Research)"

Sort by: Order: Results:

  • Huttunen, Heli (2023)
    Eye plaque radiotherapy is a treatment method of ocular tumors: A sealed radiation source is temporarily placed on the surface of the eye in day surgery. Compared to externally delivered conventional radiation treatments, more precisely targeted brachytherapy allows a higher dose in the target tissue while keeping the dose to healthy tissue relatively low. In Finland, all eye plaque treatments are centralised in Helsinki and brachytherapy of the eye is performed annually on approximately 70 patients. Patient specific anatomy takes into account determination of specific location and shape of the tumor in respect of radio-biologically critical structures of the eye. Until now, this has not been systematically modeled in dose calculation of eye plaque brachytherapy at HUS. The new version of Plaque Simulator, a 3D treatment simulation and modeling package for I-125, Pd-103, Ir-192 and Ru-106 plaque therapy of ocular tumors, enables importation and digitisation of patient imaging data (fundus imaging, CT and MRI) which consequently allows for systematically accurate estimation of dose distribution not only in the tumor but also in surrounding healthy tissues. The aim of this Master’s thesis is to prepare the new version of Plaque Simulator simulation and modeling package for clinical use in patient dose calculation at HUS. A comparison is done between the dose calculation method of the old and the new version of Plaque Simulator, and the dose calculation parameters as well as the plaque modeling parameters are reviewed. The function of the image-based dose calculation method is also tested with an anonymised patient treated for a tumor of a more peculiar shape. The absorbed dose to water on the central axis of the radiation source is measured experimentally for two individual I-125-seed along with Ru-106-CCB-, I-125-CCB-, and two I-125-COB-plaques. Experimental results are compared with the results obtained from Plaque Simulator. Individual I-125-seed is used to calibrate the detector at a distance of 10 mm, yielding to a calibration factor of 0.808. The use of the gold parameter in the dose calculation is justified, and a dosimetry modifier of Plaque Simulator is found to be 1.226 for I-125-plaques. Ru-106-plaque measurements are not calibrated, making them only relative. However, an excellent correspondence is observed between Ru-106-plaque dose calculations in Plaque Simulator and the manufacturer’s certificate. The measurements are normalized to the manufacturer’s certificate with a normalisation factor of 1.117.
  • Kistol, Joanna (2024)
    Monoenergetic neutron reference fields are used in neutron metrology for the calibration of different neutron detectors, including dose rate meters. The International Standardization Organization ISO has composed guidelines and requirements for the production of narrow energy spread neutron fields using a particle accelerator. The objective of this Thesis was to investigate a target material that could be used to produce a monoenergetic neutron field by irradiating it with protons. A broader energy distribution was deemed satisfactory in regard to the initial phase of the station’s development, as significant modifications to the beamline would be necessary to acquire more precise beam current values and to achieve proton energies closer to the reaction threshold energy. The target material was chosen to be lithium fluoride (LiF) based on a literature review and Monte Carlo simulations. The simulations were executed with the proton energy of 2.5 MeV, which is close to the threshold energy of the 7Li(p, n)7Be reaction, and with the fixed energy 10 MeV of the IBA cyclotron used to conduct the experiment. The simulations were executed with the MCNP6 code, and the results were compared to those obtained from equivalent Geant4 simulations. The simulations suggested two wide peaks around 3 MeV and 0.6 MeV at the proton energy of 10 MeV. The irradiation experiment included two phases, one of which entailed the use of a shadow cone to estimate the number of scattered neutrons in the neutron yield. The maximum neutron fluence of (2.62 ± 0.78)∙109 s-1 was measured at the pop-up probe current of (8.3 ± 0.8) µA. Gamma spectrometry was utilized after the experiment to further evaluate the number of 7Li(p,n)7Be reactions taken place in the target by calculating the number of 7Be nuclei in the LiF plate. Altogether, lithium fluoride exhibits promising characteristics as a target material for accelerator-based monoenergetic neutron production, although its application demands further considerations regarding for instance, the decrement of the proton energy and the aiming and measurement of the proton beam. These results contribute to the future development of a neutron irradiation station at the University of Helsinki.
  • Heikkilä, Jesse (2022)
    Nanoformation of an active pharmaceutical ingredient (API) in controlled expansion of supercritical solution (CESS®) was studied in situ with a schlieren imaging technique in wide range of pre-expansion and expansion conditions, involving pressures up to 1000 bars. The optical methods allowed measurements on solvent state in the first micro and milliseconds of the expansion. Quantitative values on jet shape and solvent thermodynamic state were obtained for different nozzle configurations. These values, combined with mathematical modelling, enabled tracking the nanoparticle formation along the flow. We also report on the importance of solvent phase behavior demonstrated by three fundamentally different expansion schemes: supercritical (SC) to liquid/gas, SC to gas/liquid, and SC to SC. Scanning electron microscope images of the nanosized API are presented. This shows that one can have controlled particle formation by altering the thermodynamic conditions at the nozzle and changing the expansion path. The results guide the in-house process optimization and offer insight into the physics of supercritical fluid processing.
  • Rantamaa, Anton (2024)
    This thesis presents an acoustic microscope that is using coded signals to improve the signal-to-noise ratio (SNR) without increasing the voltage applied to the transducer. The operating principle of an acoustic microscope is presented with a detailed description of the coded excitation scanning acoustic microscope (CESAM). Acoustic microscopy is compared to other non-destructive testing (NDT) methods, and developments to improve acoustic imaging with coded signals are presented. Biological sample images from a rabbit femur bone are presented, and issues with surface roughness related to imaging bone structures in general are discussed. The increase of bone content with increased time post operation is calculated. Surface roughness of a rabbit femur bone sample containing a bioactive glass implant is analyzed, and acoustic impedance map of this sample is presented.
  • Hägg, Veera (2023)
    Nanodiscs are a synthetic model system for studying the behavior of cell membranes. They are used in experimental biological research to understand structural and functional properties of membrane proteins. Their utility is chiefly due to their water solubility and a relative native lipid environment for membrane proteins compared to other synthetic membrane systems. Though membrane proteins are frequently solubilized and stabilized in a nanodisc environment, the physical conditions that they are exposed to in a nanodisc have not been studied in detail. Additionally, the dynamic behavior of transmembrane proteins in a nanodisc environment has not been characterized with respect to a more typical planar bilayer environment. The results presented in this thesis formulate an answer to these open questions through atomistic molecular dynamics simulations and machine learning methods. Nanodiscs and bilayer systems with identical lipid compositions are systematically studied, and separately, both types of systems with adenosine receptor A2AR to understand the differences between the model systems. The membrane environment in the two systems is characterized by two well understood physical properties: the order parameter, and the diffusion of lipids in the membrane. The results not only affirm previous studies of nanodiscs but also provide novel insights into the membrane environment of the nanodisc systems. Finally, with the help of machine learning methods, the dynamical behaviour of the protein is shown to be significantly altered in the nanodisc system when compared to a planar bilayer environment. Specifically, it is shown that the activation behavior of A2AR is dependent on model system used to reconstitute the protein.
  • Alenius, Saara (2023)
    Kartiokeilatietokonetomografia eli KKTT on tyypillisimmin käytetty kuvausmodaliteetti kuvantaohjatussa sädehoidossa ja sitä käytetään pääasiassa potilaan asemointiin ja sädehoidon kohdistamiseen. KKTT-kuvantaminen perustuu röntgensäteilyyn ja sen käytön haittapuolena potilas saa ylimääräistä säteilyannosta sekä hoidettavalle alueelle että sitä ympäröiville terveille kudoksille. Eturauhassyöpä on miesten yleisin syöpätyyppi Suomessa ja paikallista eturauhassyöpää voidaan hoitaa esimerkiksi sädehoidolla. Ionisoivan säteilyn käyttö lisää terveiden kudosten syöpäriskiä ja siksi KKTT-kuvantamisen aiheuttaman säteilyannoksen määritys ja optimointi on tärkeää. Tämän työn tarkoituksena on selvittää yhdeksässä suomalaisessa sairaalassa käytettäviä KKTT-kuvantamisen kuvausparametreja ja kuvauskäytäntöjä sekä laskennallisesti määrittää kuvantamisen aiheuttamia potilasannoksia ja optimoinnin vaikutuksia. Laskenta tehdään käyttäen Monte Carlo menetelmään perustuvaa ImpactMC-ohjelmaa, ICRP:n vokselitestikappaletta ja suomalaisten sairaaloiden käyttämiä kuvantamisen parametreja. Tulosten esittämiseen käytetään riskielinten kokonais- ja elinannoksia, isodoosipiirroksia xy- ja xz-tasoissa, riskielinten annostilavuushistogrammeja sekä annosprofiileja xy- ja xz-tasoissa. Tässä työssä lasketut riskielinten elinannokset ovat yhdellä kuvauskerralla noin mGy:n luokkaa ja kokonaissäteilyannokset riippuvat vahvasti kuvausfraktioiden määrästä. Symmetrisen keilan geometriassa säteilyannokset ovat pienempiä kuin epäsymmetrisen keilan geometriassa. Kuvantamisessa käytettävä kuvausalueen pituus, kuvausputken aloituskulma ja kuvausputken kiertosuunta vaikuttavat symmetrisessä geometriassa myös eri riskielimien saamaan säteilyannokseen ja säteilyn jakautumiseen xz-tasossa. Tuloksista havaitaan, että sekä symmetrisen että epäsymmetrisen keilan tapauksissa kuvausparametrien optimointi esimerkiksi putkivirtaa laskemalla pienentää eturauhasen, peräsuolen, reisiluun punaista luuydintä sisältävän osan ja virtsarakon saamaa elinannosta. Kuvausparametrien optimointi pienentää annostasoja myös kaikissa muissa lasketuissa tapauksissa kuten isodoosipiirroksissa ja annosprofiileissa.
  • Onnela, Samuel (2024)
    Monienerginen röntgensäde kokee kovenenemista aineessa. Yleisimmin röntgenpaneelien kalibroinnissa käytetty flat-field (FF)-korjaus on riittämätön säteen kovenemisen aiheuttamien kuvavääristymien korjaamiseen. Signal-to-thickness Calibration (STC)-menetelmässä kuvataan useita paksuuksia väliainetta ja luodaan pikselikohtainen sovitus säteen havaitun intensiteetin ja väliaineen välillä.Tämä sovitus ottaa sekä pikselikohtaiset vaste-erot, että säteen kovenemisen huomioon. Tässä tutkimuksessa arvioitiin STC-menetelmän kykyä parantaa kuvanlaatua verrattuna FF-korjattuun rekonstruktioon käyttäen kliinistä pään alueen kartiokeilatomografialaitetta. Kalibrointimateriaalina toimi akryylimuovi (PMMA). Kuvanlaatua arvioitiin kontrastin, kontrasti-kohina-suhteen, paikallisen kohinan ja cupping-ilmiön voimakkuuden sekä rengaskuvavääristymien arvioinnin avulla. Tutkimus avaa STC-menetelmän toimivuutta eri kudoskohteille hyväksikäyttäen fantomia ja kudosekvivalentteja materiaaleja. Tutkimuksessa tarkasteltiin sekä kovia että pehmeitä kudoksia. Kovina kudoksina käytettiin neljää eri konsentraatiota kalsiumhydroksiapatiittia (CaHA) sekä kolmea konsentraatiota jodia. Pehmeitä kudosekvivalentteja materiaaleja olivat aivot, imusolmukkeet, veri,rasvakudos, maksa, keuhko ja lihas. Fantomina toimi QRM Spectral Phantom II. Kun vertaillaan STC-korjattuja rekonstruktioita FF-korjattuihin, sekä kontrastin että kontrasti-kohina-suhteen havaittiin paranevan noin 27-30% aivo-, imusolmuke- ja lihaskudoksilla. Suurin kasvu tapahtui 80 kV:n putkijännitteellä. Ainoa kudosekvivalentti materiaali, jolle ei havaittu systemaattista kontrastin paranemista oli rasvakudos. Muissa pehmeissä kudoksissa kasvua tapahtui n.5%:sta 20%:iin. Koville kohtioille STC-menetelmän havaittiin myös kohentavan kontrastia n.4% - 9%. Cupping-ilmiön voimakkuuden heikkenemistä havaittiin systemaattisesti kaikilla kuvausparametreilla. Suurin heikkeneminen tapahtui kuitenkin intuitiivisesti matalimmalla putkijännitteellä 80 kV. Rengaskuvavääristymien voimakkuutta arvioitiin subjektiivisesti, eikä niiden havaittu heikkenevän merkittävästi. Tulokset antavat viitteitä kohenneesta pehmeän kudoksen kontrastista, joka on yksi suurimmista rajoittavista tekijöistä kartiokeilatietokonetomografiassa. Kudosten HU-arvoissa päästiin STC-korjatuilla rekonstruktoilla lähemmäksi todellisia kudosten HU-arvoja.
  • Kemppainen, Veera (2023)
    Tietokonetomografialla (TT) on ollut jo usean vuosikymmenen ajan tärkeä asema lääketieteellisenä kuvantamismenetelmänä, jolla pystytään tuottamaan tarkkoja leikekuvia kehon rakenteista. TT on historiansa aikana muuttunut ja kehittynyt menetelmänä teknologisten harppausten ansiosta. Kuvauksista on tullut nopeampia ja entistä tarkempia. Kaksoisenergiatietokonetomografia (KETT) on yksi TT-kuvantamisen kehitysaskel, jonka teoreettiset perusteet ovat olleet jo pitkään tiedossa, mutta joka on vasta viime vuosikymmenenä saanut enemmän sovelluskohteita. KETT lisää TT-kuvauksen materiaalierottelukykyä, mikä mahdollistaa tarkemman diagnostiikan ja vähentää jatkotutkimusten tarvetta. Laajempi KETT:n kliininen käyttö vaatii kuitenkin toimintatapojen muutosta ja pysyvän laadunvalvontaprotokollan muodostamista. Tämän maisterintutkielman tarkoituksena oli auttaa laadunvalvonnan kehittämistä HUS:n Diagnostiikkakeskuksessa kartoittamalla KETT-kuvausten toimintaa, kuvausparametrien vaikutusta tuloksiin ja laitekohtaisia eroja. Työhön kuuluvat mittaukset suunniteltiin ja toteutettiin yhdessä HUS:n Diagnostiikkakeskuksen Meilahden Tornisairaalan radiologian yksikön kanssa. Kuvauksissa käytettiin Siemens Healthineersin valmistamia SOMATOM Definition Flash - ja SOMATOM Force -laitteita sekä KETT-kuvantamiseen soveltuvaa testikappaletta. Mittauksissa tutkittiin testikappaleen pystysuuntaisen asettelun vaikutusta kuvauksista saataviin tuloksiin, materiaalien elektronitiheyden ja efektiivisen järjestysluvun määritystarkkuutta, varjoaineena käytetyn jodin pitoisuuden määritystarkkuutta ja kuvauksen annostason merkitystä. Työssä käytetyllä menetelmällä määritettiin testikappaleen materiaalien koostumuksellisia eroja. Tutkimuksen avulla voitiin havaita jodipitoisuuden määrittämisen olevan haasteellisempaa hyvin pienillä alueilla, mutta halkaisijaltaan 5 mm:n kokoisilla alueilla määritystarkkuus oli jo kohtalainen. Potilaan oikeanlaisen keskityksen ja kuvanlaadun havaittiin olevan erityisen tärkeää pehmytkudoksia kuvattaessa. Laitteiden välisten erojen todettiin olevan merkittävämpää eri laitemallien välillä kuin samanmallisten laitteiden välillä. Laadunvalvonnassa tulee ottaa huomioon laitteiden kalibraatio, jotta laitteiden välisiä eroja pystytään vähentämään. Jatkossa mittauksia tulee toteuttaa lisää mittausten välisen toistettavuuden varmistamiseksi.
  • Juvonen, Ville (2023)
    Lentoaika-rekyylispektrometria (TOF-ERDA) on materiaalin tutkimusmenetelmä, minkä avulla kyetään selvittämään näytteen alkuainepitoisuudet syvyyden funktiona. Menetelmässä on huomattu esiintyvän systemaattista poikkeamaa teoriasta. Poikkeaman syy on toistaiseksi epäselvä. Tutkielmassa tutkittiin poikkeaman syytä sekä suuruutta. Tutkimiseen käytettiin Helsingin yliopiston kiihdytinlaboratorion 5 MV EPG-10-II-tandemkiihdyttimeen liitettyä TOF-ERDA-laitteistoa. Laitteistolla tutkittiin ilmiön esiintymistä eri hiukkasilla, eri energioilla ja eri näytteillä. Kokeiden tuloksia verrattiin teorian ehdottamiin tuloksiin. Suurimmat poikkeamat kokeiden ja teorian välillä esiintyi pienienergisillä ja keveillä ammusioneilla, kun tutkittiin raskasalkuaineista näytettä. Kokeissa käytettyjen hiukkasten sirontaa TOF-ERDA-laitteiston lentoaikaporteista selvitettiin simuloinneilla. Simulointityökaluna työssä käytettiin SRIM-ohjelmistoa. Simulointien pohjalta hiukkasille laskettiin korjauskertoimet. Korjauskertoimen suuruuden huomattiin olevan riippuvainen hiukkasen energiasta sekä järjestysluvusta. Korjauskertoimista luotiin malli, jonka avulla kyetään arvioimaan ja korjaamaan kokeissa tapahtuvaa sirontaa lentoaikaporteista. Myös varjostumisen vaikutusta tuloksiin tutkittiin. Varjostumista tutkittiin jo olemassa olevan Andersenin mallin avulla. Andersenin mallin mukaan varjostumisen vaikutus tuloksiin on hyvin vähäistä sekä ilmiötä pienentävää, ei ilmiötä selittävää. Huomioitavaa kuitenkin on mallin soveltumattomuus kyseisiin vuorovaikutuksiin, täten varjostumisen vaikutusta ilmiöön ei voida kokonaan poissulkea. Tutkielman tulokset valottavat TOF-ERDA:n systemaattisen poikkeaman syitä. Lentoaikaporttisironnan vaikutus tuloksiin on merkittävä, selittäen noin puolet ilmiöstä. Tulosten pohjalta luotu malli on voimassa vain kyseiselle TOF-ERDA-laitteistolle, sillä sironnan suuruus on riippuvainen lentoaikaporttien materiaalista, paksuuksista sekä laitteiston geometriasta. Kuitenkin mille tahansa TOF-ERDA-laitteistolle on mahdollista luoda vastaava malli, noudattamalla tämän tutkielman prosesseja. Jäljelle jäävän selittämättömän poikkeaman huomattiin olevan myös riippuvainen energiasta sekä järjestysluvuista. Tämä viittaisi jäljelle jäävän poikkeaman aiheutuvan mahdollisesta monikertasironnasta näytteessä, ja tai varjostumisesta, jota Andersenin malli ei kykene huomioimaan.
  • Dursun, Sahin (2021)
    This thesis focuses on the initial measurements and development of a 1.5K target temperature cryostat to contain all quantum standards in the quantum metrological triangle. Currently, the cryostat can reach 4.2K end temperature with a cryocooler to liquefy helium for cooling experiments related to the quantum standards of SI-units which require 1.5K end temperature and the 1.5K cooling circuit is one of the research questions of the thesis for future development of the cryostat. Measurements included cooling cycles in a helium environment for liquefaction, as well as no load conditions. Results of the experimentation conclude that liquefaction was unsuccessful at this stage, but could be achieved with improved temperature control. The thesis is based on experimental work carried out in VTT technical research center of Finland, during the course of which the cryostat was progressively developed towards the future utility of combining experiments that realize the quantum standards of Ampere, voltage and resistance under a single low temperature experimental platform, the unified quantum standard cryostat.
  • Lemettinen, Eemil (2024)
    In the field of cryogenics and superconducting technology, the effect of eddy currents presents a significant challenge, as large inductive currents can affect the performance and stability of cryogenic components. In our work, we examine how the magnitude of eddy current effects varies with different samples when placed within a changing magnetic field. In high magnetic field applications, any deviation in the magnetic field induces currents within low-resistivity components, leading to eddy current heating and Lorentz forces. This thesis focuses on how to simulate the eddy current phenomena in an accurate way through methods of finite element analysis, utilizing the commercial software of COMSOL Multiphysics. To provide a comprehensive simulation of the effects of eddy currents, our work involves the coupling of three distinct physical fields: solid mechanics, heat transfer, and electromagnetic fields. To solve multiphysical problem in an efficient way, we explain different strategies on how the coupled fields can be solved in a simplified, but effective way. The simulation was examined for two different time scale scenarios: 1. Turning on the magnet, where the time scale of the phenomena is in the order of several hours, and 2. The more demanding scenario of the quench of a superconducting magnet, where the time scale is in the order of several seconds. We found that during the ramping of the magnet the electromagnetic heating of the sample can reach the scales of milliwatts, which is significant head load in a cryogenic setting. During magnet quench, we found that the Lorentz forces can reach up to scales of kilonewtons. The results indicate that the volume of the sample has significant impact to effects of eddy currents, but when considering the magnitude of the Lorentz force the length and spatial location of the sample has significant effect. Hence, it is crucial to pay attention to the appropriate design of the sample that is placed into the magnetic field.
  • Koponen, Maria (2023)
    Transcranial magnetic stimulation (TMS) is a non-invasive method for stimulating cortical neurons in the brain. Combining TMS with functional magnetic resonance imaging (fMRI) shows the effects of TMS through the changes in brain metabolism. This information is necessary for developing new applications of TMS and for improving the efficacy and safety of the existing treatments. The biggest setback in current TMS–fMRI technology arises from the mechanical forces formed on the transducer as the interplay of the magnetic fields from the MRI and the changing current in the coil, leading to breakage of the transducers and additional safety risks. The objective of this Thesis was to assess and compare the mechanical stresses on multi-locus TMS (mTMS) transducers inside a high-field fMRI bore using finite element modeling, and to build and test transducer options based on the simulation results. For a transducer design for rats, six different coil former materials and three mTMS coil combinations were simulated with two commonly used current waveforms. In addition, the effect of the transducer orientation relative to the magnetic field was modeled with a transducer designed for humans. Our results show that the current pulses ran through the coils produce shock waves on the coil formers, leading to regions of maximum stresses that depend on the time instant. The intensity and location of the maximum stresses depends on the current waveform and coil combination used. Based on the results, 30% glass-fiber filled polyamide was found to be the most durable material. This Thesis provides novel insights for more durable TMS coil designs.
  • Kilpeläinen, Aarre (2023)
    Scanning probe microscopy (SPM), which includes atomic force microscopy (AFM), is an affordable and powerful tool for investigating surfaces. However, to ensure accuracy, a metrologically informed approach is required. In this thesis, a commercial Jupiter XR AFM was used for calibration experiments testing its reliability and accuracy. AFMs can further be improved by the use of active probes with added capabilities that allow for faster scanning speeds and other improvements. Efforts have been made to enable their broader use. At VTT MIKES, the commercial Jupiter XR AFM is being modified to use active probes capable of self-sensing and self-actuation. A simple AFM was first built as a test setup to better understand the probes and to split their integration into the Jupiter AFM into a step-by-step process where the mechanical, electronic, and software changes necessary could be separated into distinct parts. In this thesis, I describe experiments done to test the reliability of the commercial AFM, and the process of constructing and using the test setup AFM, after which I present some results obtained using them, and discuss the experiments and the integration process. Included is also an overview of metrology and some of the physics and other theory relevant to AFM, and a summary of the principles of AFM and its role in microscopy. This work is part of the MetExSPM project, which seeks to develop traceable high speed scanning probe microscopy, for example by achieving higher scanning speeds and larger scanning areas, while maintaining good resolution and metrologically traceable high accuracy. This will greatly increase the utility of SPMs, especially for industrial applications.
  • Makkonen, Eetu Petter (2024)
    Vacuum breakdown is a limiting factor in the design of powerful and cost-efficient particle accelerators. Modern models have suggested that the rate of breakdowns is driven by dislocation dynamics in the electrode materials suffering from breakdowns. In order to understand why specifically the copper-2wt%beryllium alloy outperforms other electrode materials in vacuum breakdown rate and maximum electric fields in breakdown experiments at CERN, a new machine-learning interatomic potential (ML-IAP) for the CuBe alloy was developed. Density functional theory (DFT) was used in calculating a dataset of atomic forces, energies, and virials for a set of CuBe structures. This dataset was performed a fit on with Gaussian process regression, producing an IAP with close-to-DFT accuracy in its intended use cases. With the developed IAP, the interactions between single interstitial beryllium atoms and edge dislocations in a face-centered cubic (FCC) copper matrix were studied with molecular dynamics (MD). It was found that beryllium atoms bind to the edge dislocations, inhibiting their mobility under shear stress. Furthermore, beryllium atoms were found to increase the intrinsic stacking fault energy of FCC copper, possibly leading to an increase in dislocation mobility. These two findings suggest that beryllium atoms could increase copper's resistance to vacuum breakdown mainly via trapping dislocations. Future studies could look at how precipitates of beryllium, or other alloys of copper, play a role in dislocation dynamics.
  • Papponen, Joni (2022)
    Imaging done with conventional microscopes is diffraction-limited, which sets a lower limit to the resolution. Features smaller than the resolution cannot be distinguished in images. This limit of the diffraction-limit can be overcome with different setups, such as with imaging through a dielectric microcylinder. With this setup it is possible to reach smaller resolution than with a diffraction-limited system, which is called super-resolution. Propagation of light can be modelled with various simulation methods, such as finite-difference time-domain and ray tracing methods. Finitedifference time-domain method simulates the light as waves which is useful for modelling the propagation of light accurately and take into account the interactions between different waves. Ray tracing method simulates the light as rays which requires approximations to the light’s behaviour. This means that some phenomena cannot be taken into account, which can affect the accuracy of the results. In this thesis the model for simulating super-resolution imaging with microcylinder is studied. The model utilizes the finite-difference timedomain method for modelling the near-field effects of the light propagating through the microcylinder and reflecting back from a sample. The reflected light is recorded on the simulation domain boundaries and a near-field-to-far-field transformation is performed to obtain the far-field corresponding to the recorded fields. The far-field is backward propagated to focus a virtual image of the sample, and the virtual image is then used in ray tracing simulation as a light source to focus it to a real image on a detector.
  • Nozais, Chloé (2024)
    The NV⁻ center is an optically active defect consisting of a nitrogen atom next to a vacancy with a trapped electron. The defect is ideally suited for many quantum applications and thanks to its long coherence time at elevated temperatures, it can be used as quantum bits for quantum information processing even at room temperature. The defect is found in diamond, which is an exemplary host to a wide range of optically active defects due to its unique properties. As nitrogen is the most common impurity in diamond, NV centers occur naturally but at concentrations that are often deemed insufficient for applications. Thus, understanding the formation process of NV centers and how to efficiently produce them with high spatial resolution is of great interest. In this thesis, the formation of NV centers through irradiation has been studied both in the nuclear and electronic stopping power regimes with molecular dynamics. The analysis of the atomic configurations and displacement resulting from the irradiation revealed two different formation mechanisms, in which either a carbon vacancy is created next to a nitrogen atom or a nitrogen atom becomes mobile to be trapped by a vacancy. While the probability of NV formation from irradiation alone was shown to be low in the nuclear regime, two-temperature molecular dynamics simulations of swift heavy ions in the electronic regime showed the direct formation of NV-centers along the ion’s path. By producing NV centers along an almost one dimensional chain, swift heavy ions offer high spatial resolution in addition to high conversion rates from nitrogen to NV centers due to their high energies.
  • Djurabekova, Amina (2022)
    Energy is an essential input for any non-spontaneous mechanism. In biological organisms, the process of producing energy currency, adenosine triphosphate, is called cellular respiration. It is made of three smaller steps, out of which the last one is oxidative phosphorylation that is responsible for the largest production of adenosine triphosphate molecules in the whole process. Oxidative phosphorylation is performed by the electron transport chain made of five protein complexes, named respiratory complex I-V. Complex I is the first and largest protein complex in the electron transport chain, and it is the least understood. Its primary function is to transfer electrons from nicotinamide adenine dinucleotide to ubiquinone, which is coupled to the pumping of four protons across the mitochondrial inner membrane. Although the overall reaction of complex I is understood, the intricate detail of the mechanism is still largely unknown. There is significance in the details because there are numerous point mutations, which have been strongly correlated with neurogenerative diseases, such as Leigh’s syndrome, and aging. Therefore, a more thorough understanding of its mechanism can give insight into potential target drug development. Complex I is made of 14 highly conserved subunits that can be found in most species that use the electron transport chain. They create an L-shape, where seven subunits are embedded in the inner membrane, the membrane domain, and the others are floating in the mitochondrial matrix, the peripheral arm. In mitochondrial complex I, however, there are in addition around 30 accessory subunits. It has been previously thought that the main mechanism is conducted by the 14 subunits that are found in all species. However, in the past couple of years, it has been shown that accessory subunits can play an important role in the mechanism of mitochondrial complex I. The work presented in this thesis uses a multiscale computational approach to study the effect of three mutations, F89A, Y43A and L42A, from an accessory subunit LYRM6 on the function of complex I. Previous experiments demonstrated that the mutations decreased the overall activity of complex I by 76-86 %. The LYRM6 subunit is located at the pivot of the membrane and periplasmic domains. The results of this study show that the point mutations have a long-range effect on the conformations of three loops from three conserved subunits in this region. The shift in the loop dynamics causes a drop in water occupancy. The observed water pathway is tested for the capability of proton transfer. The findings are demonstrated with the help of molecular dynamics and quantum mechanics/molecular mechanics simulations.
  • Mikkola, Kalle (2022)
    This thesis examines the optical response of tuneable chiral plasmonic nanostructures in linear cross-polarization. Plasmonic gold-silver nanostructures composed of silver-coated gold nanorods, and dynamic DNA origami are investigated because of their optical properties of interest in the visible light wavelength region, and because of their controllable rotational asymmetry, which results in tuneable chirality in dimer structures. These plasmonic nanostructures present optical properties such as circular dichroism and optical rotatory dispersion. In this thesis we establish the relationship between perceived color, spectrometry, circular dichroism and optical rotatory dispersion of the samples, depending on the chiral geometry of the nanostructures within. The motivation is to predict perceived color from the chiral geometry of the nanostructures, which will enable visual detection for biosensing applications. Circular dichroism and optical rotatory dispersion give us detailed knowledge about the polarization state of a sample, but visible light detection and spectrometer measurements are more accessible and portable methods for characterizing the polarization state of a sample. We achieve color modulation from green to blue with the switching of chiral geometry, under cross-polarized white light. This has potential for biosensing applications, based on the perceived color change depending on the chiral geometry of the sample. The DNA origami structures react to the presence of an analyte by changing their chiral geometry. Possible applications in biosensing of analytes can be made more practical if the orientation of the DNA origami template can be determined from the perceived color or the transmission spectra, rather than from the less accessible circular dichroism or optical rotatory dispersion measurements.
  • Porri, Paavo (2022)
    Ensuring adequate air quality is integral to healthy living. Since in modern societies the majority of time is spent indoors, understanding indoor air pollution and the means of air purification are of great importance. Adverse health effects are induced by volatile organic compounds (VOC) that originate from everyday activities and our surroundings. Photocatalysis is a radiation-activated chemical transformation that can be used to decompose organic pollutants into harmless constituents. However, existing air purification solutions employing photocatalysis often rely on UV light limiting the use of solar radiation. Titanium dioxide is a popular photocatalyst material, but it requires modification to its electronic properties to respond to visible light. An established approach is to introduce atoms of other dopant elements into the titania lattice. Atomic layer deposition (ALD) is a thin film deposition technique widely studied especially in metal and metal oxide research. Following from the principle of sequential saturation of the surface, control over the size and composition of the film may reach atomic level. Since the chemical configuration of a doped TiO2 film is of utmost importance to successful modification, ALD is an excellent tool to examine suitable photocatalytic TiO2 chemistries. Furthermore, thin solid films of catalytically active material would have a distinguished advantage for deployment in real-life settings over their powderous counterparts. The literature review of this thesis explores the semiconductor photocatalysis with an eye on its suitability to indoor air purification. The motivation is to give the reader a view on the air quality issue, the existing technological solutions and how a thin film photocatalyst could supplement the field. Titanium dioxide doping concepts are introduced to elucidate the rationale behind the experimental efforts. The experimental part describes a development project to deposit visible-light responding photocatalysts. Titanium dioxide thin films co-doped with nitrogen and zinc/fluorine were grown on steel plates. An in-house built reactor system was used to study acetaldehyde degradation under irradiation. Unfortunately, the reactor experienced a malfunction, rendering a large part of the results futile. Moreover, months of valuable time were lost in chasing a mirage of fallacious data. In the end an ALD grown photocatalyst responding to visible light could not be materialized.
  • Lehtinen, Miko (2022)
    Molecular hydrogen is considered as the primary alternative to replace fossil fuels for future energy supply. Hydrogen can be produced sustainably through electrocatalytic hydrogen evolution reaction which is a vital step in water electrolysis. So far, the efficiencies of electrochemical and photoelectrochemical water electrolysis systems are too low to satisfy the demands for hydrogen on a commercial scale. Plasmonic nanostructures containing a plasmonic and a catalytic component hold great promise for enhancing the performance of typical water electrolysis systems through plasmonic photocatalysis utilizing localized surface plasmon resonance excitation. Here, a novel plasmonic-catalytic u@AgPd nanorattle is synthesized, characterized, and investigated for plasmon-enhanced hydrogen evolution reaction to provide new insights into the design of light-assisted water electrolysis systems. The nanorattle exhibited significant improvements of performance towards hydrogen evolution reaction under 427 nm illumination, displaying a near 2-fold current increase and a decreased overpotential of 58 mV at a current density of 10 mAcm-2. The material is evidenced to plasmon-enhance the electrocatalytic performance through a combination of charge transfer and local heating mechanisms.