Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Title

Sort by: Order: Results:

  • Popov, Georgi (2014)
    The global energy consumption increases annually. Although the current supply of fossil and nuclear fuels is enough to meet the growing energy demand it is more sustainable for the society to rely more on renewable energy sources because of the environmental concerns of fossil fuel combustion and nuclear fission. One of the promising renewable energy sources is solar power. Currently the competitiveness of solar power with the conventional energy sources is limited by the expensiveness of the solar cells. The most successful solar cell technologies require expensive fabrication methods and materials. However, this situation can drastically change with the emergence of perovskite ternary halide solar cells. Perovskite ternary halides possess optical and electronic properties required for efficient light absorption in solar cells. In addition, they consist of abundant inexpensive elements and can be deposited using easy and low-cost sol-gel methods. During the last four years, the efficiency of perovskite solar cells was improved by a factor of 4 and the record holding devices now reach 16 % efficiency. Due to the novelty of perovskite solar cells there are formidable gaps in the knowledge of perovskite ternary halide properties and mechanisms of perovskite solar cell operation. Literature review in this thesis focuses on classifying known perovskite ternary halides, their properties and deposition methods as well as highlighting discrepancies and most important knowledge gaps. Special attention is also devoted to different types of perovskite solar cells and their working principles. The literature review is complemented by calculations on the existence and the optical properties of not yet studied perovskite ternary halides, and on lattice matching of different known perovskite halides in the context of multijunction perovskite solar cells. Conventional perovskite halide deposition methods are inexpensive but also limited to small area substrates. In order to reach economic feasibility the perovskite deposition methods must be scalable to large area substrates. In the experimental part of this thesis, an attempt is made to solve the scalability challenge by developing perovskite ternary halide deposition processes for techniques that have scalability as an inherent property. These techniques are atomic layer deposition and electrodeposition. Although an electrodeposition process for cesium tin(II) iodide was developed, the morphology and phase of the deposits along with the stability of the electrodeposition solutions were difficult to control. For atomic layer deposition processes the volatility of the halides presents a challenge, however encouraging preliminary results were obtained in the cases of binary iodide deposition such as cesium iodide and copper(I)iodide. These results can serve as a basis for the future research of both binary and ternary halide atomic layer deposition.
  • Karjalainen, Antti (2020)
    Join indices are used in relational databases to make join operations faster. Join indices essentially materialise the results of join operations and so accrue maintenance cost, which makes them more suitable for use cases where modifications are rare and joins are performed frequently. To make the maintenance cost lower incrementally updating existing indices is to be preferred. The usage of persistent data structures for the join indices were explored. Motivation for this research was the ability of persistent data structures to construct multiple partially different versions of the same data structure memory efficiently. This is useful, because there can exist different versions of join indices simultaneously due to usage of multi-version concurrency control (MVCC) in a database. The techniques used in Relaxed Radix Balanced Trees (RRB-Trees) persistent data structure were found promising, but none of the popular implementations were found directly suitable for the use case. This exploration was done from the context of a particular proprietary embedded in-memory columnar multidimensional database called FastormDB developed by RELEX Solutions. This focused the research into Java Virtual Machine (JVM) based data structures as the implementation of FastormDB is in Java. Multiple persistent data-structures made for the thesis and ones from Scala, Clojure and Paguro were evaluated with Java Microbenchmark Harness (JMH) and Java Object Layout (JOL) based benchmarks and their results analysed via visualisations.
  • Karvonen, Elli (2021)
    The topological data analysis studies the shape of a space at multiple scales. Its main tool is persistent homology, which is based on other homology theory, usually simplicial homology. Simplicial homology applies to finite data in real space, and thus it is mainly used in applications. This thesis aims to introduce the theories behind persistent homology and its application, image completion algorithm. Persistent homology is motivated by the question of which scale is the most essential to study data shape. A filtration contains all scales we want to explore, and thus it is an essential tool of persistent homology. The thesis focuses on forming a filtaration from a Delaunay triangulation and its subcomplexes, alpha-complexes. We will found that these provide sufficient tools to consider homology classes birth and deaths, but they are not particularly easy to use in practice. This observation motivates to define a regional complement of the dual alpha graph. We found that its components' and essential homology classes' birth and death times correspond. The algorithm utilize this observation to complete images. The results are good and mainly as could be expected. We discuss that algorithm has potential since it does need any training or other input parameters than data. However, future studies are needed to imply it, for example, in three-dimensional data.
  • Ahola, Titta (2014)
    A number of electronic personal devices have increased enormously during the last years, and the mobile communication has become an important part of business and personal life. Thus, people need flexible and secure networking solutions that makes their personal devices and services accessible regardless of time and place. While a personal area network (PAN) enables communication between a person's devices around him/her, a personal network (PN) extends that PAN to other personal devices and services further away. First, a local cluster formation and then an interconnection to a personal network, should take place as automatically as possible. The formed network should adapt to its surroundings and support as many network technologies and devices as possible. This thesis focuses mainly on the network layer mechanisms of personal networks. First, the requirements for personal networks are presented, and existing technologies that can be utilised in it are introduced. The essential part of the thesis is an example design of the personal network architecture and its implementation. Furthermore, the thesis discusses how this architecture fulfils placed requirements, and presents an application that utilises the implemented personal network platform. The master's thesis has been written at VTT, and the described research work has been performed in the EU IST projects 'My Personal Adaptive Global Net' (MAGNET) and MAGNET Beyond.
  • Paalanen, Ilkka (2020)
    Cold quark matter is matter consisting of free quarks in high energy density, and it can be formed when the energy density of ordinary hadronic matter increases to a region of 1 GeV/fm3. At such high energies, hadronic matter undergoes a phase transition and quarks that would normally be in color confinement break free to form a new phase. It is assumed that similar process happened in the very early universe, but in the opposite direction, when high temperature quark-gluon plasma cooled down significantly. With the cooling, the quark and gluon degrees of freedom switched to hadrons and ordinary matter began to form. Opposed to the hot quark-gluon plasma, there are no direct observations of cold quark matter and its existence is still speculative. Still, it is suspected that cold quark matter can be found in dense neutron star cores or even as stable quark matter in strange quark stars. Theoretically, cold quark matter and quark-gluon plasma can be studied in finite-temperature field theory. Finite-temperature field theory combines the field formalism of quantum field theory and the thermodynamical and statistical methods utilized in quantum statistics. The asymptotic freedom of the theory of strong interactions, quantum chromodynamics (QCD), provides an opportunity to expand the equation of state of high-energy quark matter in the limit of weak coupling, and thus opens a door to implement the tools of finite-temperature field theory perturbatively. Along with the perturbative analysis, it is useful to look at the possibilities offered by effective theories. Two of which are important in the study of finite-temperature QCD, dimensional reduction and hard thermal loop effective theory. Both effective theories address the issue of infrared divergences that arise in finite-temperature field theory efficiently compared to the naïve loop expansion. In dimensional reduction, scales that are defined as hard by the scale hierarchy are integrated out of the theory, after which the infrared problems of gluonic Matsubara zero-modes can be studied in a simpler three-dimensional setting. Hard thermal loop effective theory, on the other hand, examines the infrared divergences that appear in loop-level corrections of soft gluons. When the magnitude of the loop-momentum corresponds to the hard scale, the correction that contains the loop becomes proportional to a tree-level amplitude and breaks the perturbative expansion. The effective theory answers this problem by resumming the propagators and vertex functions and using the new quantities in place of the ordinary ones. With perturbation theory and the effective descriptions, the equation of state of cold quark matter and the pressure extracted from it, have been solved partially up to and including order g6ln2g2 in coupling. The meaning of this thesis is to present the methods of finite-temperature field theory and the supporting effective theories and their implementation to study the equation of state of cold quark matter. The results for QCD pressure will be presented to the last known order in coupling. Also, the effect of a massive strange quark and the role of cold quark matter in solving the neutron star equation of state will be discussed briefly.
  • Ikonen, Teemu (Helsingin yliopistoUniversity of HelsinkiHelsingfors universitet, 2002)
  • Romana, Leo (2019)
    Tavoitteet. Suomalaisten peruskoulua päättävien oppilaiden matematiikan osaamistaso on kääntynyt kansainvälisten vertailututkimusten mukaan laskuun 2000-luvulla. Matematiikan taitotaso on 9.- luokkalaisten keskuudessa laskenut vuodesta 2006 vuoteen 2015 yhden vuoden kouluopetuksen tuoman taitotasomuutoksen verran. Matematiikan oppijoiden osaamisessa on ollut havaittavissa polarisoitumista, ja heikkojen osaajien määrä on kasvanut. Heikko osaaminen näyttää kasaantuvan usein joillekin yksilöille läpi eri kouluaineiden. Tutkielmassa pyritään selvittämään syitä tai selittäviä tekijöitä matematiikan heikon osaamisen yleistymiselle. Menetelmät. Tutkielmassa esitellään erilaisten kansainvälisten ja kansallisten osaamistutkimusten aineistoa ja tuloksia. Tutkielman tutkimuksellinen, empiirinen aineisto kerättiin kesällä 2018 järjestetyn tiedeleirin yhteydessä kyselyllä, johon vastasi 12 leirille osallistunutta 4.–6.-luokkalaista nuorta. Vastaajat osallistuivat leirille vapaaehtoisesti. Aineistoa kerättiin monivalintalomakkeilla ja avoimilla kysymyksillä. Aineistoa analysoitiin tilastollisin menetelmin ja kvalitatiivisesti. Tulokset ja johtopäätökset. Tutkielman perusteella näyttäisi siltä, että alakoulun oppilaiden mukaan luokan työrauhalla on huomattava merkitys oppimisessa suoriutumiseen, keskittymiseen ja siihen, kuinka positiivisena luokkatyöskentely koetaan. Tulokset saavat vahvistusta kirjallisuudessa aiemmin esitetyistä tulkinnoista. Työrauha-asiaan vahvasti liittyy 2010 toteutettu uudistus, jossa pysyvät erityisopetusryhmät lakkautettiin. Resurssipula on vaivannut kouluja, eikä oppilaille ole pystytty tarjoamaan riittävää tukea henkilökohtaisen oppimisen edistämiseksi. Tutkielman sivutuotteena luotiin yläkoulun opettajille tarkoitettu kysely, jolla voitaisiin selvittää opettajien näkökulmasta nykykoulun ongelmakohtia ja edelleen syitä heikolle oppimenestykselle.
  • Väli-Torala, Venla (2023)
    Tavoitteet. Tutkimuksen tarkoituksena oli selvittää inkluusion vaikutusta työrauhaan ja oppimistuloksiin perustuen yläkoulun opettajien kokemuksiin matematiikan opetuksessa. Inkluusio on viime aikoina puhuttanut paljon koulumaailmassa ja mediassa, sitä tutkitaan ja siitä kerätään kokemuksia, tietääksemme onko inklusiivinen koulu oikea kehityssuunta suomalaisessa peruskoulujärjestelmässä. Julkinen mielipide ja omat kokemukseni aiheesta olivat pääosin negatiivisia, joten hypoteesina oli, että inkluusio heikentää oppimistuloksia ja työrauhaa luokissa. Inkluusion perimmäinen ajatus tasa-arvoisesta ja yhdenvertaisesta koulumaailmasta on arvokas ja nykyinen kehitys pohjaa kansainvälisiin sopimuksiin. Nykyinen malli ei kuitenkaan nähdäkseni ole ainoa tapa toteuttaa inklusiivista opetusta. Aiempia tutkimuksia on inkluusiosta, muttei niinkään matematiikan opetukseen liittyen. Menetelmät. Tutkimukseen osallistui 47 luokkien 7.–9. matemaattisten aineiden opettajaa ympäri Suomea. Aineistoa kerättiin opettajille teetetyn kyselytutkimuksen avulla. Kysely sisälsi taustatietojen lisäksi sekä monivalinta- että vapaa teksti -kysymyksiä. Aineistoa analysoitiin pääosin laadullisesti, mutta joitain ilmiöitä kuvattiin myös määrällisin menetelmin. Analyysi on fenomenografinen, koska siinä paneuduttiin nimenomaan opettajien omiin kokemuksiin. Tulokset ja johtopäätökset. Suurin osa kyselyyn vastanneista opettajista oli sitä mieltä, että inkluusio on vaikuttanut negatiivisesti sekä oppimistuloksiin että työrauhaan luokissa. Monet avoimet vastaukset kuitenkin korostivat haasteiden johtuvan pääosin resurssien puutteesta. Opettajien vastaukset tukivat hyvin tutkimuksen hypoteesia. Johtopäätöksenä voidaan todeta inkluusion olevan vielä keskeneräinen kehityssuunta suomalaisessa koulujärjestelmässä ja sen toteutus ja resursointi vaatii vielä kehittämistä. Toisaalta on myös syytä pohtia, miten inkluusio saadaan parhaiten toimimaan ja onko siihen kuluvat resurssit yhteiskunnallisesti järkevää käyttää, vai olisiko oppilaidenkin kannalta tasa-arvoisempaa ja yhdenvertaisempaa varmistaa kaikille mahdollisimman hyvät oppimistulokset ja työrauha.
  • Riihimäki, Katariina (2021)
    The mafic-ultramafic Kevitsa intrusion, located within the Central Lapland Greenstone Belt in Northern Finland, hosts a disseminated Ni-Cu-PGE deposit. Drillhole KVX018 penetrates through the intrusion, intersecting its bottom contact at 1772 meters and is associated with relatively low resistivity at the bottom of the intrusion. The KVX018 drillhole is the deepest drilled into the intrusion so far and the observed low resistivity zone is unique for the study area. Previous studies have shown the bottom contact of the Kevitsa intrusion to be associated with seismic reflections and possible mineralization. This paper studies the characteristics of the bottom contact of the Kevitsa intrusion from the drill core KVX018 and interprets the origin of the low resistivity and its relationship with mineralogy. From geochemical and petrophysical characteristics, four layers with different characteristics were observed within the studied section: footwall, contact zone, lower cumulates and upper cumulates. The lower cumulates were found to be strongly contaminated by elements associated to hydrothermal fluids from country rocks. The contamination was observed for 125 meters upwards from the basal contact as elevated concentrations of e.g. lithium, lanthanum, rubidium and potassium, and footwall rocks close to the contact were found to be depleted in these elements. The contact zone was found to be strongly altered by silicification and albitization. Hydrothermal fluid activity at the bottom contact was also observed by epidote alteration of plagioclase feldspar. Contact zone mineralization was observed and it was found to be false ore type with Ni tenor of 2.28 %. Upwards from contact mineralization, the mineralization was found first to change into local low-grade Ni-PGE ore and then into normal ore on top part of the studied drill core section. Ultramafic intrusive rocks were observed to be pervasively altered by amphibole alteration locally into a degree where in many rocks, alteration had overprinted the primary mineralogy and textures to be undistinguishable. Alteration intensity was found to increase downwards within the lowermost part of the intrusion. Salt minerals were observed by eye on the surface of some samples and by X-Ray Diffraction in one sample. XRD studies indicated nitratine and sylvite minerals present in the studied sample. These salt minerals are presented commonly in evaporites and their presence indicates an evaporitic source. Resistivity of rocks is generally affected by e.g. sulfide content, salinity, porosity and alteration. Resistivity and chargeability were found to be correlative, indicating resistivity to correlate also with presence of sulfide minerals. However, after depth of 680 meters, resistivity decreases without a correlating trend in other petrophysical properties. This paper concludes that the observed low resistivity is resulted from a presence of salt and sulfide minerals as well as alteration intensity.
  • Romu, Ilona (2013)
    Jurassic (159 Ma), ultrapotassic, mica-rich dykes of Kjakebeinet represent the youngest magmatic rock type observed in western Dronning Maud Land, Antarctica; abundant xenoliths are enclosed by the dykes. A petrographical description of the xenoliths and one of the dykes was made to distinguish the rock types and to gain information of the unknown basement below Kjakebeinet, situated on the southern edge of Vestfjella mountainrange. The mineral chemistry and petrography of the xenoliths and one of the lamproite dykes were studied using petrographic microscope and electron microprobe (EDS-mode). Rb-Sr and Sm-Nd isotopic determinations were made on metagabbroic and carbonatite xenoliths. Most of the xenoliths record evidence of granulite facies metamorphosis and they represent several crustal rock types. Tonalite, alkali feldspar granite, and augen gneisses, metagabbros and metasedimentary xenoliths were observed. Two of the xenoliths, carbonatite, and phlogopite rock, are cognate. This thesis shows that the crust below the southern Vestfjella is heterogenic, and contains differentiated metaigneous rock types. The xenoliths include Proterozoic basement gneisses, and possibly also Permian sedimentary rocks and Mesozoic igneous rocks. The studied lamproite dyke is phlogopite-sanidinediopside-olivine lamproite which shows affinity to madupitic lamproites and group II kimberlites.
  • Lehtovuori, Aki (2023)
    The Bjurböle meteorite, which fell near Porvoo in 1899, is categorised as a fall. The Bjurböle meteorite is classified as an L/LL4 ordinary chondrite. Chondrites are undifferentiated meteorites that contain notable amounts of non-volatile elements of the early solar system. Chondrites usually contain small spherical igneous chondrules and they are classified into three groups: carbonaceous (C), enstatite (E) and ordinary chondrites (O). Ordinary chondrites are further classified into groups H, L and LL according to their metallic iron content. Chondrites are classified into petrologic types 1 – 6 based on their metamorphic grade so that Type 3 is the least metamorphosed and Type 6 is the most strongly metamorphosed, whereas Type 1 and Type 2, on the other hand correspond to meteorites that are, respectively, strongly and mildly affected by low-temperature aqueous alteration processes. The chemical equilibration of chondrites is controlled by the degree of metamorphism they go through. The more equilibrated a chondrite is, the more simplified its mineral assemble is and the more homogenised compositions the minerals have. Chondrules contain mostly olivine, pyroxene and interchondrule matrix. They are classified into Type I and Type II by the compositions of their olivine and pyroxene. Chondrule types can be further divided into A, B and AB by their olivine content. In addition, chondrules can be classified according to their texture into porphyritic, barred, radial, granular, cryptocrystalline, and metallic chondrules. The aim of this thesis is to inspect the variation in olivine composition in Bjurböle meteorite chondrules, to document the petrography of the Bjurböle meteorite and to find connections between petrographic discoveries and olivine composition. Furthermore, in this study I will discuss about the classification of the Bjurböle meteorite and the formation of chondrules in the Bjurböle meteorite. For this study, I examined 11 thin sections and three epoxy buttons that have 34 chondrules in total. Thin sections were inspected by microscope and six of the uncoated thin sections were also inspected under cold-cathode luminescence. The epoxy buttons were inspected with a scanning electron microscope, scanning electron microscope cathodoluminescence and scanning electron microscope energy-dispersive X-ray spectroscopy. Most of the inspected chondrules in the Bjurböle meteorite samples have very uniform olivine composition, as reported in earlier studies. Most of the olivines are Fo75–78, but there is also a bimodal peak at Fo89–92. The E1 chondrules (small) have very uniform olivine compositions of approximately Fo76–77. The E2 chondrules (medium) have also olivines of approximately Fo76–77, but some of the olivines reach Fo80–83. The E3 chondrules (large) have the broadest olivine composition variation at Fo74–93. However, most of the E3 olivines are Fo76–79. The E3-2 chondrule, in particular, has a broad olivine composition variation and its Fo-value increases up to 93 in the core of the chondrule. All chondrules with broader olivine variation have barred texture and are relatively large. Cathodoluminescence did not provide substantial data for the study. Other links between olivine compositions and petrography were not observed and, for example, proximity to metallic phases did not seem to have any effect on the olivine composition, and the exceptionally Mg-rich (Fo90) olivines may represent primary compositions. E3-6 and E3-7 chondrules are abundant in sulphide and metallic phases. The E3-7 chondrule resembles something that might be called micropallasite. Based on porosity, magnetic susceptibility, metamorphic signs, and the Fe variation in olivine and mineral assemblages, the Bjurböle meteorite fits the classification of an L/LL4 ordinary chondrite. Chondrules of the Bjurböle meteorite also have diverse forming histories.
  • Leppälä, Timo (2024)
    Tiivistelmä/Referat – Abstract The Geological Survey of Finland (GTK) conducted extensive bedrock mapping and sampling along the southern border of the Central Finland Granitoid Complex (CFGC) between 2016–2017. The 40000 km2 complex was formed during the early stages of the 1.92–1.77 Ga Svecofennian orogeny and is dominated by felsic plutonic rocks. The main crust-forming phase at 1.91–1.87 Ga generated the felsic syn- and postkinematic suites during active subduction. Jyväskylä suite corresponds to the synkinematic rocks (1.89–1.88 Ga) and Saarijärvi and Rautalampi suites to the postkinematic (1.88–1.87 Ga). Previous studies have divided the postkinematic rocks into Types 1, 2, 3a and 3b, of which Types 1–3a represent the Saarijärvi suite and Type 3b the Rautalampi suite. The postkinematic suites are bimodal because of the local mafic association. Volcanic rocks associated to a continental margin setting are especially found along the southern-southwestern margin of the CFGC. Abundant metasediments with a mainly turbiditic origin surround the complex. The purpose of this thesis is to classify the granitoids and dioritoids of the Jämsä region into either the syn- or postkinematic types, discuss their petrogenesis and compare the data to the adjacent volcanic rocks. New petrographical, geochemical and geochronological data are used to set the plutonic rocks into the regional geological framework. Six distinct types are recognized from the study area: Mettisuo, Akkasuo, Linjamaa, Haavistonmäki, Kalaoja and Hangasjärvi. The first three were found to be synkinematic (Jyväskylä) and the last three postkinematic (Saarijärvi) with respect to the orogenic stages. The synkinematic Mettisuo (1890 ± 4 Ma) and Akkasuo-type (1880 ± 6 Ma) equigranular to inequigranular granitoids are metaluminous to peraluminous with Akkasuo being slightly more mafic. They have higher CaO and Sr and lower K2O and FeOt/MgO than the postkinematic types. The Linjamaa-type inequigranular dioritoids represent the Vaajakoski quartz diorite lithodeme (Jyväskylä suite) owing to their more juvenile character. However, there are discrepancies within the Linjamaa division. Partial melting of biotite- and hornblende-rich high-K calc-alkalic rocks by basaltic underplating produced the synkinematic types, leaving behind a granulitic residue. The Haavistonmäki-type (1876 ± 7 Ma) alkali feldspar-porphyritic granites are postkinematic Type 1 with a sedimentary component from the Pirkanmaa migmatite belt. They are peraluminous with low Na2O and FeOt/MgO and high FeOt and Al2O3. The Kalaoja-type inequigranular to porphyritic granitoids are transitional between postkinematic Types 2 and 3. The lack of fluorite and pyroxenes complicate the classification. They are metaluminous to peraluminous with relatively low FeOt, MgO and CaO and higher FeOt/MgO and K2O. The Hangasjärvi-type (1885 ± 5 Ma) granitoids are silica-rich, resembling postkinematic Type 2. They differ from the Kalaoja rocks by their equigranular to inequigranular character, but the same mineralogical restrictions apply in the classification. A mantle-derived basaltic magma assimilated variable amounts of the lower crust, producing the postkinematic magmas. A depleted granulitic residue likely does not produce sufficient amounts of K2O and LILE contents for the postkinematic magmas. The postkinematic types are bimodal because of the locally associated mafic rocks. The volcanic rocks of the study area belong to the same continental subduction environment, are locally coeval and share a partially similar origin as the Jyväskylä suite and the mafic members of the Saarijärvi suite.
  • Pietilä, Maija (2020)
    Geological Survey of Finland conducted bedrock mapping in the eastern parts of Central Finland Granitoid Complex (CFGC) and the area next to the Archean craton in the 1990s. The area consists mainly of Paleo-proterozoic paragneisses, with minor volcanic rocks present. The granitoids belonging to the Central Finland Granitoid Complex make up part of the bedrock in the area. The granitoids of CFGC are divided into a 1.89-1.88 Ga syn-kinematic group, and a crosscutting, 1.88-1.87 Ga post-kinematic group. In this Master’s thesis, three post-kinematic granitoid intrusions of Löytölamminvuori, Sorsakoski and Karvalevä are studied, covering their lithological, petrographical and geochemical features. The intrusions are non-foliated, porphyritic granites and quartz-monzonites, with a minor mafic phase of mostly dioritic composition in the Karvalevä intrusion. The main mafic silicates in the granite phase are biotite and hornblende, in the quartz-monzonite and mafic phases also clino- and orthopyroxene are present. Resembling the other post-kinematic plutons of the CFGC, the studied intrusions are geochemically high in Al2O3, FeO and K2O, and low in MgO, CaO and Sr. One U-Pb age of 1876+6 Ma has been measured for the Löytölamminvuori intrusion, which places the intrusion at the same time frame as the other post-kinematic plutons. Geochemically the intrusions show A-type affinity and close similarities to the post-kinematic pluton Types 2 and 3, fitting best with the Type 3a, which is transitional between the two. The magmas forming Löytölamminvuori, Sorsakoski and Karvalevä were derived from partial melting of mantle derived basalts, which underwent crustal contamination by partial melts from the lower crust. Slight deviation in composition from the strictly A-type magma and the volcanic arc affinity can be explained by the crustal component. The mafic phases show more primitive geochemistry, and thus present the mantle-derived source component with less crustal assimilation in the source. The intrusions show signs of bimodal mafic-felsic magmatism, the dioritic phases in Karvalevä intrusion and one syn-plutonic dyke in Sorsakoski intrusion representing the mafic component. The mafic magmatism was cogenetic with the felsic phases, but not comagmatic, the diorites intruding simultaneously but slightly after the felsic phases. The mafic phases show a continuum in chemical composition to the granites and quartz-monzonites, but with a slight compositional gap.
  • Karampelas, Nikolaos (2022)
    Archean cratons hold information of the early crustal development of the Earth, in conditions much different than the ones that exist today. Archean cratons consist of felsic plutonic rocks and greenstone belts. These belts are a useful tool for the understanding of the development of the early geological processes that shaped the Earth. There has been a variety of suggestions regarding the origin and geodynamic conditions that formed the Archean greenstone belts and there are several possible geotectonic scenarios that could form them. This thesis focuses on the Takanen greenstone belt found in the Karelia province in the Fennoscandian shield. The main objective of this study is to constrain the age of the greenstone belt, as well as to classify and group the formations found in it and compare it with its neighbouring, and much larger, Suomussalmi-Kuhmo-Tipasjärvi greenstone belt system - the biggest complex of its kind in the Karelian craton. A diamond drilling profile across the Takanen belt has been sampled. The various rocks found in the belt are divided into 5 groups based on their thin-section petrography and major and trace element geochemistry, outlining the general stratigraphy of the belt. There are also whole rock analyses that help to obtain major and trace element geochemical data for multiple samples from different locations throughout the belt. There are 3 calc-alkaline units (CALC1, CALC2, CALC3, named after their predominantly calc-alkaline nature) that include felsic, to intermediate volcanic/volcanosedimentary rocks and 2 units that consist of channelized komatiitic lavas and tholeiitic basalts (KOMBAS, named after the komatiites and basalts of the unit), olivine/olivine-pyroxene cumulates and high-Mg to tholeiitic basalts (OLIAD, named after the abundance of olivine adcumulates). The CALC1 unit is found lowest in the stratigraphy of the area and bares the oldest age of 2.95 Ga, while CALC3, which is the youngest formation of the belt, gives an age of 2.7 Ga. There is a direct correlation with the lowest CALC1 unit and the Luoma group in the Suomussalmi greenstone belt in terms of petrography, geochemistry and age, indicating that Takanen is the continuation of the Suomussalmi-Kuhmo-Tipasjärvi system to the north. Based on the initial Lu-Hf isotope composition of the dated samples, and the stratigraphic layering of Takanen, the oldest units in the belt originate from a process of continental rifting, while the youngest ones were most likely formed by a combination of continental rifting and some interaction of the continental crust with oceanic lithosphere. The Takanen greenstone belt lies on top of a large positive gravimetric and magnetic anomaly in the Koillismaa area called the ‘‘hidden dyke’’, composed of mafic-ultramafic cumulates and hypothesized to be related to the Paleoproterozoic Koillismaa-Näränkävaara Layered Intrusion Complex. The dyke and Takanen may not be genetically related, yet their overlapping existence points to a large crustal structure that served as a magma pathway throughout the Archean and the Paleoproterozoic. The potential of an economic orthomagmatic nickel deposit related to Takanen should not be completely overlooked, as there are some favorable indications in the geochemistry of the komatiitic units, as well as their possible interaction of these units with older sulphur rich units of the belt.
  • Markkanen, Minna (2021)
    The orbicular quartz monzonite from Kuohenmaa, Southwest Finland, is one of the most beautiful and well-known orbicular rocks in the world. The cores of the orbicules are peraluminous in composition, most likely of xenolithic metasedimentary origin. The cores are surrounded by orbicule mantles, which consist of several alternating biotite- and plagioclase-rich shells. There are three types of orbicules in Kuohenmaa orbicular rock: proto-, small-, and large-orbicular types. Proto-orbicules have only a few shells, small orbicules ~ 50 shells in average, and large orbicules over 250 distinct shells. In addition to shells, one sample was observed to be associated with comb layering in the contact of proto-orbicular and large orbicular types. Structures and textures of the comb layer resembles those of the outer shells of large orbicules. The orbicules are embedded in interstitial coarse-grained groundmass that forms locally almost pegmatitic patches. The petrographic observations were acquired from eight samples or sample photographs gathered from different collections. A mineral chemistry dataset was measured from a single large orbicule from the University of Helsinki collections. The main minerals of the Kuohenmaa orbicular rock are plagioclase, biotite, microcline, muscovite, and chlorite. The shell textures vary from branching plagioclase-rich shells to fine-grained plagioclase- or biotite-rich shells. Branching shells are mainly oligoclase, but a few granular andesine crystals were detected in the core. Peculiar interstitial fibrous allanite masses were found in the inner branching plagioclase-rich shells. The plagioclase compositions generally follow a regular fractional crystallization trend from core to groundmass, but some changes towards more primary compositions are observed in the orbicule mantle. Plagioclase crystals display only minor compositional zoning, suggesting rather quick crystallization. Biotite is very aluminous (Al2O3 17.63–18.53) in composition, and the compositional changes seem to have somewhat positive correlation with plagioclase compositions, suggesting changes in their crystallization conditions. Injections of primary melt from a deeper source most likely caused the observed changes to more primitive composition in plagioclase and biotite composition. Through the detailed petrographic and geochemical studies, a model of undercooling caused by decompression driven fluid saturation is proposed as a mechanism for orbicule formation in the Kuohenmaa orbicular rock. Branching plagioclase with interstitial fibrous allanite masses and several fluid inclusions in plagioclase indicates separate aqueous REE-enriched melt and rapid crystallization. Further studies of fluid inclusions and REE-enriched phases could provide information of the fluid origin and crystallization conditions.
  • Mäkimattila, Otso (2015)
    The Ponostama ultramafic intrusion, located within the Central Lapland Greenstone Belt, comprises of pyroxenitic, olivine pyroxenitic and peridotitic units that were emplaced stratiformally between Sodankylä Group tuffs and epiclastics. The intrusion, previously unknown on geological maps, is located in an area of known magmatic sulfide deposits and is Ni-depleted, which indicates prospectivity. Petrographic, geochemical and thermodynamic methods were used to geologically describe the intrusion. In addition Kevitsa Ni-Cu deposit and seven other un-mineralized ultramafic occurrences from CLGB were used as a reference group to compile a mineralogical and trace element comparison and to evaluate ore potential. Cumulate texture is abundant in Ponostoma and a common silicate mineral assemblage consists of tremolite, serpentine, chlorite and variable amounts of primary or metamorphic olivine. Amhibolite facies recrystallization has locally produced poikiloblastic olivine porhphyroblasts. Pseudosection indicates a minimum temperature of 450 °C and low H2O activity for metamorphic olivine growth. Major element compositions have little variation within lithological units and Mg# varies between 70 and 80. Olivine compositions vary between Fo60 and Fo70, which indicates relatively evolved parent magma composition. Metamorphic olivines are less magnesian than primary olivines, but no other compositional differences occur. The Ni and Cu concentrations are similar to un-mineralized host rocks of the Kevitsa deposit due to formation of a sulfide liquid. Immobile trace element concentrations are close to values of the 2.2 Ga Taljavaara intrusion. Low sulfide content together with low Ni and Fo in olivine indicate low ore potential.
  • Haapala, Pieti (2019)
    Komatiites are extrusive rocks crystallized from mantle derived high-MgO magmas. They formed mainly during the Archean as the required high degree partial melting of the mantle peridotite (>20%) was facilitated by the geotherm of that time. Komatiites are classified as volcanic rocks with >18 wt.% MgO and <1 wt. % TiO2. By their physical features komatiite melts are of high-temperature and low-viscosity. Komatiitic rock suites are abundant in the Archean bedrock of the eastern Finnish Lapland. They are mainly found as cumulate bodies with also their related komatiitic basalts and mafic volcanic rocks being abundant in the Tulppio Metavolcanic belt. Typical of Archean terrains in Fennoscandia, all komatiitic rocks in the eastern Lapland are extensively deformed and primary mineral assemblages and textures are rare. Mapping and sampling was performed in the municipalities of Savukoski and Salla, NE Finland, in order to clarify the geochemical characteristics and petrogenesis of the komatiitic suites of the Eastern Lapland Archean Domain (ELAD). On the basis of their lithology and previous studies, three komatiitic cumulate complexes were selected for detailed geochemical and petrographical comparison. These are the Jänesselkä mafic-ultramafic complex, the Tulppio ultramafic complex, also referred to as the Tulppio dunite, and the Värriöjoki ultramafic complex. The first two are situated in the Tulppio metavolcanic belt whereas the Tuntsa metasedimentary belt hosts the Värriöjoki ultramafic complex. The lithology and geochemical characteristics of the Jänesselkä mafic-ultramafic complex suggest it having a different origin than the komatiitic rocks forming the Tulppio metavolcanic belt. Based on parental magma calculation and near continuum of rock types observed the Jänesselkä mafic-ultramafic complex represents a fractionated magma chamber with a basaltic composition (~6 wt. % MgO). The dunitic Värriöjoki ultramafic-complex is a feeder cumulate formed from a magma with a composition of high-MgO basalt (~12 wt. % MgO). Due to the similarities in their major- and trace element contents and suggested ages (2.45 Ga), the possibility of Värriöjoki and Jänesselkä being Paleoproterozoic suites with a similar primary magma is notable. Therefore, a petrogenetic link to the widespread 2.4–2.5 Ga mafic-ultramafic magmatism in the NE parts of the Fennoscandian shield, is proposed. The Tulppio ultramafic complex shows geochemical features suggesting a different origin in comparison to the two other complexes studies. Estimates on the parental magma composition (~17 wt. % MgO) and near chondritic REE contents suggest Tulppio being a feeder cumulate of earlier, possibly Archean magmatism in the area. Owing mainly to the poor level of exposure and heavy post magmatic modification, any detailed interpretations on the origin of the target complexes are rather difficult to. Therefore, isotope studies are seen as a necessity to clarify these topics.
  • Luhta, Tuija (2019)
    This work presents a new set of petrophysical laboratory measurements from Kylylahti, a Cu-Au-Zn mine in the Outokumpu mining district, in the eastern Finland. Results are discussed and compared to earlier petrophysical data from the area. The study was aimed to provide a solid base for accurate interpretation of already existing geophysical exploration data and to new seismic data collected during the COGITO-MIN (COst-effective Geophysical Imaging Techniques for supporting Ongoing MINeral exploration in Europe) project. The sample set covered the most common rock types found in Kylylahti. A small set of samples represented sulphide mineralizations from several mining sites in the Outokumpu district. In the area, ophiolitic ultra-mafic massifs consisting of Outokumpu assemblage rocks, are embedded in Kalevian sediments, black schists and mica schists. Several massifs, Kylylahti being one of them, contain polymetallic (Cu-Co-Zn-Ni-Ag-Au-Cd-Sn-As-Se-Mo) massive, semi-massive or disseminated sulphide mineralizations. The petrophysical parameters measured were density, seismic P-wave velocity, porosity, magnetic susceptibility, intensity of remanent magnetization, inductive resistivity, galvanic resistivity and chargeability. Additional parameters calculated from the measurements were seismic impedance, Königsberger (Q) ratio and induced polarization (IP) estimates. Density data divides the Kylylahti rocks in three categories: 1) Massive and semi-massive sulphide mineralizations with an average density of 3750 kg/m 3 , 2) Outokumpu assemblage rocks with densities close to 3000 kg/m 3 and 3) Kalevian rocks with densities a bit under 2800 kg/m 3 . Sulphide disseminations are common in Outokumpu assemblage carbonate-skarn-quartz rocks and black schists elevating the densities when abundant. The average P-wave velocities for almost all Outokumpu assemblage rock types are a bit over 6 km/s. Soap stones, mica schists and black schists have lower P-wave velocities, around 5.5 km/s. Porosity of the samples was very low overall. Most of the Kylylahti rocks belong to paramagnetic group (susceptibilities under 2000 μSI). Serpentinites and tremolitic calc-silicate rocks (TRECS) belong to strongly magnetic group as well as samples rich in disseminated sulphides. Low Q ratios reveal that magnetic mineral in serpentinites and TRECS is coarse-grained magnetite. Samples with disseminated sulphides have high Q ratios, thus the disseminations are mainly monoclinic pyrrhotites. Both Kylylahti sulphide mineralizations and black schists are conductive as well as rocks rich in dissiminated sulphides. The rocks containing disseminated sulphides have high IP estimates. Conductivity of black schists is due to graphite and to some extent due to disseminated sulphides. Physical properties of the ore samples from different mining sites reveal the differences in their mineralogy, mainly their changing proportions of pyrite, pyrrhotite and magnetite. The differences are due to metamorphic zoning in the Outokumpu district; the degree of metamorphism becomes higher when going from east to west or from surface to depth. Recommended parameters, densities and P-wave velocities for seismic modelling in Kylylahti are given. Based on the results, the sulphide mineralizations should produce a detectable reflection against any background due to their high density. Also the other Outokumpu assemblage rocks have a clear contrast against the mica schists and black schists. Soap stones are an exception. The contact between Kalevian rocks and soap stones is hardly reflective at all, whereas soap stones in contact with other Outokumpu assemblage rocks form a reflecting contact.
  • Moilanen, Eero (2022)
    In the thesis ”P-Fredholmness of Band-dominated Operators, and its Equivalence to Invertibility of Limit Operators and the Uniform Boundedness of Their Inverses”, we present the generalization of the classical Fredholm-Riesz theory with respect to a sequence of approximating projections on direct sums of spaces. The thesis is a progessive introduction to understanding and proving the core result in the generalized Fredholm-Riesz theory, which is stated in the title. The stated equivalence has been further improved and it can be generalized further by omitting either the initial condition of richness of the operator or the uniform boundedness criterion. Our focal point is on the elementary form of this result. We lay the groundwork for the classical Fredholm-Riesz theory by introducing compact operators and defining Fredholmness as invertibility on modulo compact operators. Thereafter we introduce the concept of approximating projections in infinite direct sums of Banach spaces, that is we operate continuous operators with a sequence of projections which approach the identity operator in the limit and examine whether we have convergence in the norm sense. This method yields us a way to define P-compactness, P-strong converngence and finally PFredholmness. We introduce the notion of limit operators operators by first shifting, then operating and then shifting back an operator with respect to an element in a sequence and afterwards investigating what happens in the P-strong limit of this sequence. Furthermore we define band-dominated operators as uniform limits of linear combinations of simple multiplication and shift operators. In this subspace of operators we prove that indeed for rich operators the core result holds true.
  • Hakala, Heini (2021)
    A NW–SE trending dike swarm cuts Miocene volcanic rocks in the Ibex Hills and Precambrian to Cambrian cratonic rocks and sedimentary strata in the Saddlepeak Hills and Salt Spring Hills in southern Death Valley, California. These dikes are aligned with Jurassic and Cretaceous dike swarms of eastern California that are linked to the Mesozoic North American Cordilleran magmatism. The Ibex Hills dikes have been previously dated and yield K-Ar date of 12.7 Ma and are coeval with the early stage of the Miocene Basin and Range crustal extension in Death Valley. This Master’s thesis examines in detail the geology, petrography and geochemistry of the previously unstudied dikes of Ibex Hills, Saddlepeak Hills and Salt Spring Hills of southern Death Valley and a ~90 Ma dike of Mojave Desert to discuss (1) their petrogenetic link to each other and (2) their geologic significance. The samples and field observations were obtained in 2019. The Ibex Hills samples are relatively fresh compared to the dikes of Saddlepeak Hills and Salt Spring Hills which are pervasively altered by secondary minerals and have been subject to low-grade metamorphism. The sub-solidus processes that have modified the mineral assemblages of the metamorphic dikes are also reflected in various degrees of major element mobility and LOI. The whole-rock geochemical composition of the Ibex Hills and Mojave Desert samples is trachyandesite to trachyte, the Saddlepeak Hills and Salt Spring Hills samples are andesites. One Saddlepeak Hills sample is basaltic and, based on mineralogy, texture and composition, represents a 1.1 Ga diabase intrusion. All studied samples are enriched in LREEs and LILEs and have negative Ta-Nb anomaly, representing magmas with typical subduction zone characteristics with enriched lithospheric mantle component in source. EPMA and in situ LA-MC-ICP-MS analysis of plagioclase phenocrysts of two Miocene samples of Ibex Hills shows variation in anorthite content and 87Sr/86Sr ratios across phenocryst profiles indicating open-system magma chamber evolution with episodes of recharge, hybridization and assimilation during the crystallization. Variation in anorthite content and 87Sr/86Sr ratios between samples suggest heterogeneities in the source magmas. The studied dikes represent multiple episodes of dike emplacements in southern Death Valley. The Miocene dikes of Ibex Hills, coeval with the Basin and Range crustal extension, indicate an early period of southwest directed extension in the southern Death Valley. The metamorphosed dikes of Saddlepeak Hills and Salt Spring Hills represent one or more episodes of older dike emplacement and could be coeval with the Mesozoic magmatism of North American Cordilleran orogeny and the Cretaceous dike of Mojave Desert. However, geochronological analysis is needed to verify the exact ages of these dikes.