Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by master's degree program "Materiaalitutkimuksen maisteriohjelma (Materials Research)"

Sort by: Order: Results:

  • Kinnunen, Moonika (2022)
    In this project, poly(2-methyl-2-oxazoline)-block-poly(2-n-butyl-2-oxazine)-block-poly(2-methyl-2- oxazoline) (PMeOx-b-PnBuOzi-b-PMeOx) and poly(2-methyl-2-oxazoline)-block-poly(2-n-propyl-2- oxazine) (PMeOx-b-PnPrOzi) with block lengths of 35-20-35 and 100-100, respectively, were synthesized. When dispersed in water these thermoresponsive polymers aggregate into micellar aggregates or form hydrogels. Polymers were characterized with 1H-NMR, GPC, and DLS. Age-related macular edema and diabetic macular edema are the most common reasons for blindness in industrialized countries. The triamcinolone acetonide, a corticosteroid used to treat both of these macular edemas, was loaded into the polymeric micelles or hydrogel of synthesized polymers using the thin film method. The loading efficiency for a triblock copolymer ((PMeOx35-b-PnBuOzi20- b-PMeOx35) polymeric micelles was 4 % at the polymer/drug ratio of 10/4 and for a hydrogel (PMeOx100-b-PnPrOzi100) it was 48 % with the same polymer/drug ratio. The properties of the PMeOx100-b-PnPrOzi100 hydrogel formulations with the drug were studied with rheological measurements, DSC, DLS, and GPC of formulations. The formulation showed storage modulus of 3 kPa and the gelation temperature at 16 °C. From the DSC two glass transition temperatures were obtained, Tg1 at around 12 °C and Tg2 at around 74 °C. The particle size distribution of the formulation obtained with DLS showed that there were assumingly micelles or vesicles with a hydrodynamic radius between 20 and 80 nm. The drug release from the hydrogel formulation was studied with the dialysis membrane method and all the drug was released within 24 hours. Both copolymers formed quite unstable formulations with the drug. The results from this study gives information how polyoxazoline- and polyoxazine-based materials can be used to encapsulate and release corticosteroids, such as triamcinolone acetonide. To increase the drug loading capacity and to stabilize formulations, some surfactants for the drug could be tested in the future.
  • Ng, Cheuk Lam Henry (2024)
    4D printing is becoming increasingly investigated as it is emerging as a pioneering method for biofabrication. By implementing programmable shape changing thermoresponsive hydrogels in bioink formulations, a 4D response can be achieved, which can be manipulated to print artificial organs and tissues. The limited selection of biocompatible thermoresponsive hydrogels, accompanied by the mechanical weakness of hydrogels have restricted the mainstream application of this technology in the field of bioprinting. The most commonly studied thermoresponsive polymer is poly(N-isopropylacrylamide), but it is understood that the monomer N-isopropylacrylamide exhibits cytotoxicity at low concentrations. The primary goal of this study is to investigate poly(2-substituted-2-oxazoline) macromonomers as potential alternatives to poly(N-isopropylacrylamide), and the secondary goal is to investigate microgels as an additive in crosslinked networks to enhance hydrogel mechanical strength. The results in this work indicate that poly(2-n-propyl-2-oxazoline-co-2-ethyl-2-oxazoline) is a promising candidate for 4D printing, because it’s LCST can be fine-tuned by altering the monomer ratio. However, it still requires further investigation as it requires an acrylamide comonomer to crosslink, and it also has compatibility issues with commercial printing additives like Pluronic F127. The addition of 2 wt.% microgel also showed promise as it enhanced the hydrogels mechanical strength over threefold.
  • Grönfors, Saga (2022)
    In this master's thesis, polyzwitterionic copolymers were synthesized and analyzed with various methods. In the literature part, the theory behind the reactions and results is covered in order to explain the phenomena. In the literature part of the thesis, articles were used to describe the theory as extensively as possible. The theory elaborates on the most important topics considering the research part. The main topics are reversible addition-fragmentation polymerization (RAFT), polymerization-induced self-assembly (PISA), and polyzwitterions. In the reversible addition-fragmentation polymerization chapter the kinetics and possible monomers and RAFT agents are gone through also considering the pros and cons. Different disadvantages are dealt with as well when talking about RAFT polymerization. In the PISA chapter different possible morphologies and different types of PISA polymerizations are covered, concentrating still on RAFT polymerization. In this chapter also core blocks of PISA were discussed covering the core forming block used in the research, diacetone acrylamide. lastly, polyzwitterions were discussed explaining the theory, possible applications, polyelectrolyte complexes, and thermoresponsivity of polyzwitterions. Also, in this part polysulfobetaines were covered since it is the zwitterionic block in the copolymer synthesis. In the experimental part, PSBMA-PDAAM diblock copolymers were synthesized and studied with different methods. Different lengths of block copolymer were synthesized and they were studied with the most common characterization methods. Thermoresponsivity, morphology, and also the effect of the solids content of different block lengths were studied. Measurements turned out to be a success since many different morphologies were witnessed and the thermoresponsive behavior of this copolymer showed interesting results.
  • Myllymäki, Mila (2023)
    Radiation therapy is one of the key treatments for cancer, utilizing ionizing radiation to destroy cancer cells. Proton therapy uses high-energy proton beams since protons have a favorable depth-dose curve. Clinical proton beams must meet strict quality standards in order to maximise the efficacy of the treatment while ensuring the patient safety. Real-time knowledge of the beam’s intensity profile is essential for an accurate beam delivery. While gas-filled ionization chambers have traditionally been used as the standard beam monitor, the swift development of the beam delivery techniques demands for more accurate beam monitors. Semiconductor detectors potentially offer more accurate and efficient alternative for ionization chambers. In this study, the feasibility of using a silicon pixel detector in proton beams was investigated. The detector was originally designed for tracking minimum ionizing particles at the CMS experiment at CERN. Two experiments — one with an alpha source and one in a proton beam — were carried out to characterize the detector. The response to protons with different intensities and energies was investigated more closely in the proton beam. The results show that the detector response to different proton energies agrees with theoretical expectations. The saturation of the pixels limits measuring the full energy of the protons, however measuring the full energy is not essential in beam profile measurements. The detector also has a linear response to the beam intensity, although, the counting efficiency of the detector should be improved with new readout electronics. With different readout electronics, the detector might be a viable option for the beam profile measurements in clinical proton beams.
  • Amoroso, Pejk Alex (2022)
    Positron Annihilation Spectroscopy is a powerful tool for defect characterisation, especially vacancies. Various defect properties can be studied, including defect behaviour at low and high temperatures. Despite the technique having its roots in the mid-20th century, there is little research on fundamental positron behaviour at ultralow temperatures. In this thesis, Positron Annihilation Lifetime Spectroscopy and Doppler Broadening Spectroscopy, two sub-methods of the spectroscopy technique, were used to measure positron trap-free Ge in the temperature range of 14 mK-300 K. Since a positron trap-free sample was used, the purpose was not to study defect processes. Instead, the aim of the thesis was to investigate whether any interesting positron processes could be seen at ultralow temperatures in the annihilation data. Previous research in Al has shown no change in either lifetime or Doppler broadening below 77 K. Measuring the positron lifetime in the sample located in a cryostat required designing a special detector setup, as the count rate was greatly reduced due to geometry. To tackle this, lifetime detectors consisting of BaF2 scintillators and quartz-windowed photomultiplier tubes were used. In addition, both analogue and digital signal processing techniques were tested for the lifetime setup, with the digital method proving to be preferable. Doppler Broadening was measured with a high-purity germanium detector connected to a digital gamma spectrometer. The results show a decrease in S-parameter and an increase in W-parameter with decresing temprature, with the rate of change being greatest at ultralow temperatures. This behaviour is concluded to be due to incomplete positron thermalization. The positron lifetime results are more difficult to interpret, as setup challenges resulted in results of questionable accuracy. Still, the trend suggests no change in lifetime over the whole temperature interval, which is in accordance with previous research.
  • Lassila, Petri (2021)
    Lipid-based solid-fat substitutes (such as oleogels) structurally modified using ultrasonic standing waves (USW), have recently been shown to potentially increase oleogel storage-stability. To enable their potential application in food products, pharmaceuticals, and cosmetics, practical and economical production methods are needed compared to previous work, where USW treated oleogel production was limited to 50-500 µL. The purpose of this work is to improve upon the previous procedure of producing structurally modified oleogels via the use of USW by developing a scaled up and convenient approach. To this aim, three different USW chamber prototypes were designed and developed, with common features in mind to: (i) increase process volumes to 10-100 mL, (ii) make the sample extractable from the treatment chamber, (iii) avoid contact between the sample and the ultrasonic transducer. Imaging of the internal structure of USW treated oleogels was used as the determining factor of successful chamber design. The best design was subsequently used to produce USW treated oleogels, of which the bulk mechanical properties were studied using uniaxial compression tests, along with local mechanical properties, investigated using scanning acoustic microscopy. Results elucidated the mechanical behaviour of oleogels as foam-like. Finally, the stability of treated oleogels was compared to control samples using an automated image analysis oil release test. This work enables the effective mechanical-structural manipulation of oleogels in volumes of 10-100 mL, paving the way to possible large-scale lipid-based materials USW treatments.
  • Kivelä, Feliks (2022)
    The crystal structure of magnetite (Fe3O4) involves Fe2+ ions in sites with octahedral (Oh) symmetry and Fe2+ and Fe3+ ions in sites with tetrahedral (Td) symmetry. Magnetite exhibits several interesting physical phenomena, such as the Verwey transition, in which the roles of the different Fe sites are an active subject of research. In the X-ray standing wave (XSW) technique, incoming and diffracted X-ray beams interfere inside a crystal, creating a standing wave with the periodicity of the diffracting atomic lattice. The phase of the wave, i.e. whether the nodes are located on the lattice planes or between them, can be adjusted by finely tuning the diffraction angle. Changing the phase in this way makes it possible to selectively vary the contributions of different atoms and absorption types (dipole versus quadrupole) to the measured total absorption spectrum. Iron K-edge absorption spectra in magnetite were studied in the presence of an XSW in an experiment conducted at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. This thesis presents an analysis of the data gathered during the experiment, with the goal of decomposing the experimentally measured pre-edge peak into its constituent components. The methods used in the analysis include principal component analysis and fitting predicted absorption peaks calculated with the Quanty software to the experimental data. The results show the dipole and quadrupole contributions of the tetrahedral sites responding to changes in the phase of the XSW in opposite ways in a manner consistent with theoretical predictions.
  • Pesonen, Leevi (2024)
    Rare earth trifluorides are a group of 17 compounds which have intriguing optical, electrical, and luminescence properties. However, realizing these properties in the form of thin films has had its challenges. Overall, research on the subject has been scarce. On the other hand, some rare earth fluoride thin films have found usage in for example optical filters in ultraviolet and infrared wavelengths.In this thesis a review of rare earth fluoride thin films and their deposition methods is made. Potential of the rare earth fluoride thin films is explored starting from the bulk properties of the rare earth fluorides which are compared to the published results for thin films. Additionally, the current status, challenges, and potential of rare earth fluoride thin films is discussed in the light of different deposition methods and their differences. In the experimental part of the thesis, deposition of holmium fluoride thin film by atomic layer deposition (ALD) is studied alongside its properties. In the HoF3 deposition, Ho(thd)3 (thd = 2,2,6,6- tetramethyl-3,5-heptanedionato) and niobium pentafluoride were used as precursors, latter of which was used as an ALD fluoride precursor for the first time.
  • Pudas, Topi (2024)
    This thesis contributes to the ongoing development of a novel, environmentally friendly e-waste recycling technology. We utilize high-intensity focused ultrasound to locally extract gold from the surface of printed circuit boards via cavitation erosion. Acoustic cavitation erosion is the phenomenon in which the acoustically driven violent collapse of gas bubbles in liquid cause damage to nearby solids. Bubble collapse is preceded by its dramatic growth, which is driven by the rarefactive phase of the acoustic wave. In this work, I investigate the effect of ultrasound frequency on the efficiency of gold extraction. Gold extraction experiments were conducted with three custom-built transducers, with different resonant frequencies [4.2, 7.3, 11.8] MHz. The geometries of the transducers are identical, as were the electrical driving parameters. With each transducer, a sequence of gold extraction experiments was conducted with an increasing number of acoustic bursts (ranging from 100k to 1.9M). The results demonstrate that the lowest frequency (4.2 MHz) is 3.8 and 4.5 times more efficient at extracting gold compared to [7.3, 11.8] MHz, respectively. This dramatic improvement is likely due to larger cavitation bubbles associated with lower frequencies. Larger bubbles in the cavitating zone would be expected to undergo more bubble coalescence due to a higher gas volume ratio. Since the energy of bubble collapse increases with bubble size, increased bubble coalescence should augment the energy of bubble collapse. These results provide valuable insights relating to cavitation research and will guide the ongoing development of our novel e-waste recycling technology.
  • Koivu-Jolma, Mikko (2024)
    One challenge in the research of societal phenomena is to find the balance between realism and tractable models. Molecular dynamics simulations are based on physical theories that use computationally efficient abstractions for interactions. Formulation of human interactions as physical potentials creates an opportunity to apply the computational methods from physics to social sciences. This thesis tries to answer if a simulation model based on physical pair potentials can describe the transgenerational heritance of prenatal alcohol exposure. The society is abstracted to a surface. Individuals can reproduce and die. Their life histories depend on the environment that is presented as a resource lattice with general and alcohol resource particles. The results are promising, showing decent conformity with epidemiological observations. In many cases, an analogical mechanism for societal phenomena can be found from surface physics. Additionally, material physics and epidemiology tackle with similar problems in observation of structures. To this end, this line of research has potential.
  • Raka, Doruntina (2023)
    In nuclear medicine, radiopharmaceuticals are administered to the patient to diagnose or treat various diseases. The radioactive activity of these radiopharmaceuticals is measured using a radionuclide calibrator. In this study, the response of a radionuclide calibrator in different measurement conditions was studied. Code system PENELOPE (2018) that applies Monte Carlo methods in electron and photon transport simulation was used to investigate the response as a function of photon energy emitted by the source, source location, source volume and source container type. These calculated results were compared to corresponding experimental results. Overall, the computational results conformed well with the experimental results. The computational energy-response followed a similar trend to the efficiency curve extracted from the manual of Capintec CRC-25R radionuclide calibrator. The response of the calibrator to a Tc-99m source as a function of both vertical and horizontal displacement was inspected, and the results indicated a cubic and exponential trend, respectively. In both cases, results present that there is an agreeing optimal depth range (14 - 23 cm) at which the source should be located. Within this range, the variation in response remains below 2 %. Furthermore, the central axis of the chamber was deemed horizontally optimal for measurements. In the radius range 0 - 2.1 cm, experimental results showed an increase of 4 % relative to the centre position. Corresponding calculated results presented an increase of about 3 %. The response as a function of volume and container type was calculated for Tc-99m and I-123 source, respectively. In the case of volume-response, computational results presented a decrease of around 0.5 % for volumes between 2 to 5 ml in a plastic syringe. Experimental methods showed a corresponding decrease no greater than 0.8 %. Measuring response in a 15C transparent glass vial instead of a 3 ml plastic syringe, showcased that the response is only 81 % and 75 % of that in the syringe in simulated and experimental results, respectively.
  • Savolainen, Heini (2023)
    Palmitoylation is an important posttranslational modification, which can change the function of proteins by the addition of fatty acids. In this thesis, I studied how palmitoylation affects the behavior of proteins and their interactions with the membranes. I also investigated the molecular mechanism of acetyl-palmitoyl recruitment by DHHC20, an important step in the palmitoyl transfer reaction. To this end, I used atomistic molecular dynamics simulations, which is a common computational method for studying biomolecules. In the first part of the thesis, I present my simulations and free energy calculations that show that palmitoylation enhances the partitioning of cysteines to the membranes and the spontaneous adsorption of amphipathic helices onto the membrane surface. At high levels, membrane cholesterol negatively impacts both of these properties both in the presence and absence of palmitoylation. However, palmitoylation strongly subdues the negative effect of increasing cholesterol. Moreover, palmitoylation helps proteins to maintain their helical conformation upon membrane binding. Overall, palmitoylation appears to be important for membrane interactions and the structural stability of proteins, especially under conditions of high membrane cholesterol. In the second part of my thesis, I investigated how its ligand, acetylpalmitoyl molecules, enters into the binding site of DHHC20. These simulations revealed that a short amphipathic helix at the gate of the ligand binding may play an important role in ligand recruitment and the overall stability of the enzyme. Moreover, I discovered that the protonation state of the cysteine residues that coordinate zinc cofactors is important for the stability of the zinc ions.
  • Pustorino, Gregory (2023)
    Bimetallic core-shell catalysts represent a new pathway to create highly selective and highly active catalysts. This can be done by using a relatively inactive metal as the core material and a more active metal as the shell material. The composition of both the core and shell structure can then be altered in order to tune the selectivity of the nanocatalyst. The synergistic effects of using bimetallic core-shell catalysts arise in part from the misfit strain that is encountered as a result of the difference in lattice spacings between the core and shell materials. The catalysts investigated here consist of an Au core and a Pd shell. Particles with four different Pd shell thicknesses were synthesized and the corresponding strain was measured. There is a 5.07% difference in the lattice spacings between Au and Pd, we therefore expect strain values to be near this amount. In this work, we directly measured the displacement fields that arise due to lattice mismatch in Au-Pd nanorods using High Resolution Scanning Transmission Electron Microscopy (HRSTEM) and 4D Scanning Transmission Electron Microscopy (4D-STEM). The strain was then calculated using three different analytical methods: Geometric Phase Analysis (GPA), Gaussian Peak Fitting, and nanodiffraction. These methods all measure the variations in local lattice parameters and plot these values for every pixel in the original STEM image, this results in a 2D strain map. These maps were then compared to see which produced the highest quality strain quantification.
  • Joensuu, Matilda (2024)
    In this master’s thesis, linear zwitterionic poly(ethylene imine) methyl-carboxylates (l-PEI-MCs) were synthesized through a four-step synthesis. The synthesis started with the polymerization of 2-ethyl-2-oxazoline (EtOx) monomers into poly(2-ethyl-2-oxazoline) (PEtOx) homopolymers with polymerization degree of 50 and 100. Living cationic ring-opening polymerization (LCROP) enabled a good control over the molecular weights. Subsequently, the side chains of PEtOxs were cleaved off by acidic hydrolysis. This resulted in linear poly(ethylene imine)s (l-PEIs) bearing a secondary amine group in repeating units of the polymer chain. These amine units were then functionalized with methyl-carboxylate moieties by first introducing tert-butyl ester functionalities to l-PEI chains, and subsequently cleaving off the tert-butyl groups. The final polymer is a polyzwitterion, featuring both an anionic carboxylate and a cationic tertiary amine group within a single repeating unit. Polymers produced in each step were characterized via 1H-NMR and FT-IR spectroscopy and their thermal properties were analyzed by differential scanning calorimetry (DSC). The molecular weights and dispersities (Ð) of PEtOx polymers were additionally estimated by gel permeation chromatography (GPC). Via 1H-NMR, the degree of polymerization for PEtOxs and the hydrolysis degree for l-PEIs were determined. FT-IR gave a further insight into the structures of polymers, successfully confirming the ester functionality of modified l-PEI. The disappearance of the tert-butyl proton signal in 1H-NMR spectrum after deprotection verified the successful removal of tert-butyl groups, resulting in the final product with methyl-carboxylate functionalities. By DSC, different thermal transitions, i.e., glass transition (Tg), melting (Tm) and crystallization (Tc), were observed, and the effects of molar mass and polymer modifications on these transitions were being investigated. The state of the art explores the literature regarding synthesis and properties of poly(2-oxazoline)s (POx), poly(ethylene imine)s (PEIs), and polyzwitterions. The theory behind living cationic ring-opening polymerization of 2-oxazolines and acidic hydrolysis of POxs is described. Different post-polymerization modification strategies to functionalize PEIs are being discussed. In addition, possible applications for each of these polymer classes are shortly outlined.
  • Johnsson, Ryan (2023)
    A polyoxazine based reversibly crosslinking hydrogel material developed for MEW was modified to increase its resistance to thermal degradation and impart control over its swelling properties. A portion of side chain functionalized Diels-Alder crosslinking moieties was replaced by hydrophobic octyl groups to induce the formation of a dual network hydrogel of equal crosslink density upon swelling. This modification was found to have no negative effects on the processing behavior of the material and was able to produce MEW printed scaffolds with equal stacking accuracy and fiber shape fidelity at processing temperatures 20˚C lower than a fully chemically crosslinked material. The thermal degradation of this dual network crosslinked material was significantly reduced, showing minuscule increases in viscosity when held at processing temperatures for several hours. The swelling of the dual network hydrogel was found to be similar to that of fully chemically crosslinked hydrogels despite consisting of significantly fewer chemical crosslinks, demonstrating another potential avenue of control over this material property. Finally, promising alterations in mechanical properties were observed in the dual-network hydrogel versus chemically crosslinked hydrogels, along with observations of water induced crystallization attributed to the octyl chains.
  • Mengxue, Lu (2023)
    Bioprinting has emerged as a cutting-edge technology to overcome the shortage of tissues and organs by the precise deposition of living cells and biomaterials into three-dimensional (3D) biomimetic constructs. However, the inadequate choice of bioinks has limited its widespread implementation and clinical transformation. Natural polymers, such as chitosan and alginate, are commonly used as bioinks due to their biocompatibility, biodegradability and similarity to extracellular matrix (ECM). These natural polymers are usually limited by their mechanical strength and have less tunable mechanical characteristics. Instead, synthetic polymers offer adjustable mechanical properties and good printability, and they are often used as sacrificial materials in 3D bioprinting. Hybrid hydrogels consisting of Pluronic F127 (PF) and natural polymers have been suggested to have good printability and rheological behaviors. However, PF tends to be cytotoxic at concentrations required for good printability. Another synthetic copolymer which comprises poly(2-methyl-2-oxazoline) (POx) (A-block) and poly(2-n-propyl-2-oxazine) (POzi) (B-block) was investigated as the potential alternative for PF. In this work, two different hybrid platforms consisting of synthetic POx-b-POzi /natural polymer (chitosan or alginate) and PF /natural polymer (chitosan or alginate) were formulated. The main focus of the study were on their printability and the potential of POx-b-POzi to replace PF as a sacrificial material in 3D bioprinting. POx-b-POzi and PF-based hybrid hydrogels were formulated and their printability was evaluated by rheology, mechanical compression, and 3D printing and printability assessment tests. The results showed that both POx-b-POzi and PF based hybrid hydrogels can be printed into different 3D structures, and the printed structures were successfully crosslinked. Although, the printability assessment tests and rheology showed that PF based hydrogels exhibits greater printability, POx-b-POzi also meets the critical requirements for bioinks.
  • Kirjonen, Sakarias (2024)
    One of the main goals of materials research is to find the link between the properties of materials and their fundamental structures. The distinct properties of thin films, categorized as materials from a few single layers of atoms to some hundreds of nanometers, have enjoyed an unparalleled demand in modern device manufacturing, and thus the investigation of factors which determine thin film structure and morphology is a vital area of research. In the case of thin films, their final structures can often be connected back to the initial film formation stages, such as in the crystallographic growth competition during island growth and coalescence. In this thesis, thin film growth stages are studied from the perspective of how they are affected by impurities. From the initial diffusion of adatoms on a bare substrate; to the formation of islands, their growth and coalescence; to the mobility of grain boundaries and bulk diffusion leading to the formation of a fully continuous layer; impurities influence each of these thin film growth processes in a multifaceted way, either acting as growth inhibitors, promoters or potentially neutral agents. To this end, Ag and Cu thin films were synthesized by magnetron sputtering onto SiO_2/Si substrates, with thicknesses ranging from 3 nm to 30 nm using varied deposition conditions, with the addition of a 3 nm amorphous carbon layer to limit further restructuring and oxidation. Impurities were let into the deposition atmosphere via a controlled opening of a leak valve, corresponding to a step-wise increase of base pressure from 10^(-8) Torr to 10^(-6) Torr and finally 10^(-5) Torr. The full range of thin films was deposited with each base pressure (except for 10^(-5) Torr for Cu) using two deposition rates, around 0.1 Ås^(-1) and 2 Ås^(-1). Each film was characterized ex situ with ellipsometry, 4PP, XRD and AFM to map the morphological and microstructural evolution during film growth. It is found that impurities tend to inhibit island coalescence and initial grain growth, resulting in a reduction of continuous film formation thickness and average grain size, leading to the formation of flatter films with, in most cases, less surface roughness. In later stages, it is found that impurities may allow for more grain growth by their incorporation into the growing facets. In terms of crystal structure, it is shown that impurities have a more pronounced effect on (111) oriented grains, inhibiting their growth, thus altering the preferred growth orientations of Ag and Cu by allowing (200) grains to grow larger. Grain radii and equivalent ellipse distributions showed the different responses of Ag and Cu to impurities. Ag films showed more prominent effects when a lower deposition rate was used, highlighting the impact of impurities on diffusive processes, while Cu films exhibited more effects with the use of higher deposition rates, indicating that the role of impurities, in this case, was more significant after the formation of a continuous layer.
  • Koskenniemi, Mikko (2023)
    High-entropy alloys (HEAs), esteemed for their exceptional resistance to radiation damage, carry considerable potential for deployment within fusion reactors. Nonetheless, due to their compositional complexity, comprehending the diffusion behaviour in these multifaceted alloys continues to be a daunting task. This thesis proposes a novel approach to modelling vacancy diffusion in body-centred cubic (BCC) HEAs, particularly Mo-Nb-Ta-V-W. The methodology involves the tactical application of collective variable-driven hyperdynamics (CVHD) to procure data for training a Gaussian process regression (GPR) and feed-forward neural network (FNN) model. The trained FNN model is subsequently employed within kinetic Monte Carlo (KMC) simulations for accurately predicting jump rates, whereas the GPR model is used to elucidate experimental findings related to the behaviour of vacancies in \mbox{Mo-Nb-Ta-V-W}. The robustness of the FNN model is manifested by its capacity to generalise to unseen data, whilst the efficacy of the overall method is corroborated by Monte Carlo molecular dynamics (MCMD) simulations. The CVHD methodology, uniquely capable of functioning at finite temperatures, can capture the entropic contribution to the free energy and model kinematics explicitly. This singular ability facilitates a more comprehensive understanding of the system's behaviour under authentic conditions. The findings presented in this thesis signify a considerable stride forward in the study of HEAs, providing a robust framework for the design of advanced materials. These results underscore the potential of the CVHD-trained FNN-KMC methodology in exploring complex environments, thereby establishing a firm foundation for future investigations and emphasising the need for its continued refinement and augmentation.
  • Airola, KonstaPetteri (2022)
    Aluminium nitride is a piezoelectric material commonly used in piezoelectric microelectromechanical systems (MEMS) in the form of thin films deposited by sputtering. AlN-based devices are found in wireless electronics in the form of acoustic filters, but they also have prospective applications in a wide variety of sensor systems. To enhance the piezoelectric properties of AlN, some of the Al can be replaced with scandium, which is required for next-generation devices. However, addition of Sc makes both the deposition and patterning of the film more difficult. This work focuses on patterning of AlN and Sc0.2Al0.8N thin films with wet etching. Both materials are etched anisotropically, which in theory enables etching the materials with little deviation from the mask dimensions. However, in practise, undercutting at the mask edges occurs easily making the structures narrower compared to the etch mask. This work investigates and compares the mechanisms and etch rates of AlN and Sc0.2Al0.8N. Tetramethyl ammonium hydroxide was mostly used for etching, but also H3PO4 and H2SO4 were tested. Addition of 20 atom-% Sc lowered the etch rate of the material and resulted in more undercutting. The causes behind mask undercutting were examined by using 11 differently deposited etch masks, and the undercutting was minimized by optimizing the mask deposition, using thermal annealing, and optimizing the etching temperature. Finally, the work identifies and discusses the relevant factors in depositing and patterning the AlN, ScxAl1-xN and mask films.
  • Roppo, Roope (2023)
    X-ray emission spectroscopy (XES) is an elemental characteristic x-ray technique that is used in studying the electronic properties of varied materials. It is based on an x-ray emission process that occurs due to an absorption process. First an x-ray photon is shot at the sample and electron in the inner core absorbs this x-ray photon. The electron gets kicked out of its place, creating an empty electronic state called an electron hole. This leaves the atom to an excited state that then de-excites by emitting an elemental characteristic x-ray photon. One of the main aspects of x-ray emission spectroscopy is to study sensitivity of XES towards different emission lines in different chemical environments and then compare the results. X-ray emission spectroscopy is a relatively easy technique to perform because it does not require a long-range crystal order and experiments can be done in an atmospheric pressure and in room temperature. A series of measurements were performed with non-resonant XES to study chemical properties of different uranium oxides. The experiment was done at the SOLEIL Synchrotron Facility in France. Main goal of the experiment was to study the sensitivity of XES to different uranium L3-emission lines by measuring different uranium oxides with different uranium oxidation states and compare the shape of each emission spectrum. The results showed that there are no visible differences between different samples when using non-resonant XES. However, the experiment also showed that when the resonant part is included in the measurements, then there are visible differences between different samples. This indicates the resonant part is required to collect to see differences in the spectrum when comparing the speciation of different samples.