Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by master's degree program "Magisterprogrammet i materialforskning"

Sort by: Order: Results:

  • Porri, Paavo (2022)
    Ensuring adequate air quality is integral to healthy living. Since in modern societies the majority of time is spent indoors, understanding indoor air pollution and the means of air purification are of great importance. Adverse health effects are induced by volatile organic compounds (VOC) that originate from everyday activities and our surroundings. Photocatalysis is a radiation-activated chemical transformation that can be used to decompose organic pollutants into harmless constituents. However, existing air purification solutions employing photocatalysis often rely on UV light limiting the use of solar radiation. Titanium dioxide is a popular photocatalyst material, but it requires modification to its electronic properties to respond to visible light. An established approach is to introduce atoms of other dopant elements into the titania lattice. Atomic layer deposition (ALD) is a thin film deposition technique widely studied especially in metal and metal oxide research. Following from the principle of sequential saturation of the surface, control over the size and composition of the film may reach atomic level. Since the chemical configuration of a doped TiO2 film is of utmost importance to successful modification, ALD is an excellent tool to examine suitable photocatalytic TiO2 chemistries. Furthermore, thin solid films of catalytically active material would have a distinguished advantage for deployment in real-life settings over their powderous counterparts. The literature review of this thesis explores the semiconductor photocatalysis with an eye on its suitability to indoor air purification. The motivation is to give the reader a view on the air quality issue, the existing technological solutions and how a thin film photocatalyst could supplement the field. Titanium dioxide doping concepts are introduced to elucidate the rationale behind the experimental efforts. The experimental part describes a development project to deposit visible-light responding photocatalysts. Titanium dioxide thin films co-doped with nitrogen and zinc/fluorine were grown on steel plates. An in-house built reactor system was used to study acetaldehyde degradation under irradiation. Unfortunately, the reactor experienced a malfunction, rendering a large part of the results futile. Moreover, months of valuable time were lost in chasing a mirage of fallacious data. In the end an ALD grown photocatalyst responding to visible light could not be materialized.
  • Issakainen, Jani (2021)
    Electroencephalography (EEG) is a non-invasive neurophysiological method for evaluating brain activity by measuring electrical potential at the scalp. The electrical potentials originate mainly from postsynaptic cortical currents created by neuronal activity. It is a valuable tool for both research and clinical practice. EEG can be used e.g. to diagnose epilepsy, focal brain disorders, brain death, and coma. Intermittent photic stimulation (IPS) is an important tool in clinical EEG. Healthcare professionals use it to induce epileptic activity in patients to help diagnose their conditions. In these tests, various IPS frequencies are used with eyes-closed, eyes-open, and eye-closure conditions. IPS test is listed in clinical practice guidelines in EEG globally, and it is mainly used to diagnose photosensitive epilepsy, i.e., to detect epilepsy-related abnormal sensitivity to flickering light. Magnetoencephalography (MEG) is a non-invasive neurophysiological method in which minute magnetic fields — produced by the same postsynaptic currents as in EEG — are measured with special superconductive sensors around the head. MEG is a valuable tool for research and clinical practice with increasing world-wide utilization. The main advantages of MEG over EEG are easier source modelling and higher resolution at cortical areas. IPS has not been introduced to MEG since the IPS stimulators used in EEG are not compatible with MEG. IPS in MEG could improve the analysis of IPS and provide better tools for diagnoses. Currently, data analysis of IPS is typically limited to healthcare professionals examining the visualization of the raw data while looking for induced epileptiform activites and lateralizing them. In this thesis, an MEG-compatible IPS stimulator is introduced and alternative ways of analyzing IPS data for both MEG and EEG are showcased. Although analysis methods were applied with decent signal-to-noise ratios, further research is needed—especially to compare responses between patients with epilepsy and healthy subjects.
  • Lehtinen, Miko (2022)
    Molecular hydrogen is considered as the primary alternative to replace fossil fuels for future energy supply. Hydrogen can be produced sustainably through electrocatalytic hydrogen evolution reaction which is a vital step in water electrolysis. So far, the efficiencies of electrochemical and photoelectrochemical water electrolysis systems are too low to satisfy the demands for hydrogen on a commercial scale. Plasmonic nanostructures containing a plasmonic and a catalytic component hold great promise for enhancing the performance of typical water electrolysis systems through plasmonic photocatalysis utilizing localized surface plasmon resonance excitation. Here, a novel plasmonic-catalytic u@AgPd nanorattle is synthesized, characterized, and investigated for plasmon-enhanced hydrogen evolution reaction to provide new insights into the design of light-assisted water electrolysis systems. The nanorattle exhibited significant improvements of performance towards hydrogen evolution reaction under 427 nm illumination, displaying a near 2-fold current increase and a decreased overpotential of 58 mV at a current density of 10 mAcm-2. The material is evidenced to plasmon-enhance the electrocatalytic performance through a combination of charge transfer and local heating mechanisms.
  • Kinnunen, Moonika (2022)
    In this project, poly(2-methyl-2-oxazoline)-block-poly(2-n-butyl-2-oxazine)-block-poly(2-methyl-2- oxazoline) (PMeOx-b-PnBuOzi-b-PMeOx) and poly(2-methyl-2-oxazoline)-block-poly(2-n-propyl-2- oxazine) (PMeOx-b-PnPrOzi) with block lengths of 35-20-35 and 100-100, respectively, were synthesized. When dispersed in water these thermoresponsive polymers aggregate into micellar aggregates or form hydrogels. Polymers were characterized with 1H-NMR, GPC, and DLS. Age-related macular edema and diabetic macular edema are the most common reasons for blindness in industrialized countries. The triamcinolone acetonide, a corticosteroid used to treat both of these macular edemas, was loaded into the polymeric micelles or hydrogel of synthesized polymers using the thin film method. The loading efficiency for a triblock copolymer ((PMeOx35-b-PnBuOzi20- b-PMeOx35) polymeric micelles was 4 % at the polymer/drug ratio of 10/4 and for a hydrogel (PMeOx100-b-PnPrOzi100) it was 48 % with the same polymer/drug ratio. The properties of the PMeOx100-b-PnPrOzi100 hydrogel formulations with the drug were studied with rheological measurements, DSC, DLS, and GPC of formulations. The formulation showed storage modulus of 3 kPa and the gelation temperature at 16 °C. From the DSC two glass transition temperatures were obtained, Tg1 at around 12 °C and Tg2 at around 74 °C. The particle size distribution of the formulation obtained with DLS showed that there were assumingly micelles or vesicles with a hydrodynamic radius between 20 and 80 nm. The drug release from the hydrogel formulation was studied with the dialysis membrane method and all the drug was released within 24 hours. Both copolymers formed quite unstable formulations with the drug. The results from this study gives information how polyoxazoline- and polyoxazine-based materials can be used to encapsulate and release corticosteroids, such as triamcinolone acetonide. To increase the drug loading capacity and to stabilize formulations, some surfactants for the drug could be tested in the future.
  • Ng, Cheuk Lam Henry (2024)
    4D printing is becoming increasingly investigated as it is emerging as a pioneering method for biofabrication. By implementing programmable shape changing thermoresponsive hydrogels in bioink formulations, a 4D response can be achieved, which can be manipulated to print artificial organs and tissues. The limited selection of biocompatible thermoresponsive hydrogels, accompanied by the mechanical weakness of hydrogels have restricted the mainstream application of this technology in the field of bioprinting. The most commonly studied thermoresponsive polymer is poly(N-isopropylacrylamide), but it is understood that the monomer N-isopropylacrylamide exhibits cytotoxicity at low concentrations. The primary goal of this study is to investigate poly(2-substituted-2-oxazoline) macromonomers as potential alternatives to poly(N-isopropylacrylamide), and the secondary goal is to investigate microgels as an additive in crosslinked networks to enhance hydrogel mechanical strength. The results in this work indicate that poly(2-n-propyl-2-oxazoline-co-2-ethyl-2-oxazoline) is a promising candidate for 4D printing, because it’s LCST can be fine-tuned by altering the monomer ratio. However, it still requires further investigation as it requires an acrylamide comonomer to crosslink, and it also has compatibility issues with commercial printing additives like Pluronic F127. The addition of 2 wt.% microgel also showed promise as it enhanced the hydrogels mechanical strength over threefold.
  • Grönfors, Saga (2022)
    In this master's thesis, polyzwitterionic copolymers were synthesized and analyzed with various methods. In the literature part, the theory behind the reactions and results is covered in order to explain the phenomena. In the literature part of the thesis, articles were used to describe the theory as extensively as possible. The theory elaborates on the most important topics considering the research part. The main topics are reversible addition-fragmentation polymerization (RAFT), polymerization-induced self-assembly (PISA), and polyzwitterions. In the reversible addition-fragmentation polymerization chapter the kinetics and possible monomers and RAFT agents are gone through also considering the pros and cons. Different disadvantages are dealt with as well when talking about RAFT polymerization. In the PISA chapter different possible morphologies and different types of PISA polymerizations are covered, concentrating still on RAFT polymerization. In this chapter also core blocks of PISA were discussed covering the core forming block used in the research, diacetone acrylamide. lastly, polyzwitterions were discussed explaining the theory, possible applications, polyelectrolyte complexes, and thermoresponsivity of polyzwitterions. Also, in this part polysulfobetaines were covered since it is the zwitterionic block in the copolymer synthesis. In the experimental part, PSBMA-PDAAM diblock copolymers were synthesized and studied with different methods. Different lengths of block copolymer were synthesized and they were studied with the most common characterization methods. Thermoresponsivity, morphology, and also the effect of the solids content of different block lengths were studied. Measurements turned out to be a success since many different morphologies were witnessed and the thermoresponsive behavior of this copolymer showed interesting results.
  • Myllymäki, Mila (2023)
    Radiation therapy is one of the key treatments for cancer, utilizing ionizing radiation to destroy cancer cells. Proton therapy uses high-energy proton beams since protons have a favorable depth-dose curve. Clinical proton beams must meet strict quality standards in order to maximise the efficacy of the treatment while ensuring the patient safety. Real-time knowledge of the beam’s intensity profile is essential for an accurate beam delivery. While gas-filled ionization chambers have traditionally been used as the standard beam monitor, the swift development of the beam delivery techniques demands for more accurate beam monitors. Semiconductor detectors potentially offer more accurate and efficient alternative for ionization chambers. In this study, the feasibility of using a silicon pixel detector in proton beams was investigated. The detector was originally designed for tracking minimum ionizing particles at the CMS experiment at CERN. Two experiments — one with an alpha source and one in a proton beam — were carried out to characterize the detector. The response to protons with different intensities and energies was investigated more closely in the proton beam. The results show that the detector response to different proton energies agrees with theoretical expectations. The saturation of the pixels limits measuring the full energy of the protons, however measuring the full energy is not essential in beam profile measurements. The detector also has a linear response to the beam intensity, although, the counting efficiency of the detector should be improved with new readout electronics. With different readout electronics, the detector might be a viable option for the beam profile measurements in clinical proton beams.
  • Amoroso, Pejk Alex (2022)
    Positron Annihilation Spectroscopy is a powerful tool for defect characterisation, especially vacancies. Various defect properties can be studied, including defect behaviour at low and high temperatures. Despite the technique having its roots in the mid-20th century, there is little research on fundamental positron behaviour at ultralow temperatures. In this thesis, Positron Annihilation Lifetime Spectroscopy and Doppler Broadening Spectroscopy, two sub-methods of the spectroscopy technique, were used to measure positron trap-free Ge in the temperature range of 14 mK-300 K. Since a positron trap-free sample was used, the purpose was not to study defect processes. Instead, the aim of the thesis was to investigate whether any interesting positron processes could be seen at ultralow temperatures in the annihilation data. Previous research in Al has shown no change in either lifetime or Doppler broadening below 77 K. Measuring the positron lifetime in the sample located in a cryostat required designing a special detector setup, as the count rate was greatly reduced due to geometry. To tackle this, lifetime detectors consisting of BaF2 scintillators and quartz-windowed photomultiplier tubes were used. In addition, both analogue and digital signal processing techniques were tested for the lifetime setup, with the digital method proving to be preferable. Doppler Broadening was measured with a high-purity germanium detector connected to a digital gamma spectrometer. The results show a decrease in S-parameter and an increase in W-parameter with decresing temprature, with the rate of change being greatest at ultralow temperatures. This behaviour is concluded to be due to incomplete positron thermalization. The positron lifetime results are more difficult to interpret, as setup challenges resulted in results of questionable accuracy. Still, the trend suggests no change in lifetime over the whole temperature interval, which is in accordance with previous research.
  • Lassila, Petri (2021)
    Lipid-based solid-fat substitutes (such as oleogels) structurally modified using ultrasonic standing waves (USW), have recently been shown to potentially increase oleogel storage-stability. To enable their potential application in food products, pharmaceuticals, and cosmetics, practical and economical production methods are needed compared to previous work, where USW treated oleogel production was limited to 50-500 µL. The purpose of this work is to improve upon the previous procedure of producing structurally modified oleogels via the use of USW by developing a scaled up and convenient approach. To this aim, three different USW chamber prototypes were designed and developed, with common features in mind to: (i) increase process volumes to 10-100 mL, (ii) make the sample extractable from the treatment chamber, (iii) avoid contact between the sample and the ultrasonic transducer. Imaging of the internal structure of USW treated oleogels was used as the determining factor of successful chamber design. The best design was subsequently used to produce USW treated oleogels, of which the bulk mechanical properties were studied using uniaxial compression tests, along with local mechanical properties, investigated using scanning acoustic microscopy. Results elucidated the mechanical behaviour of oleogels as foam-like. Finally, the stability of treated oleogels was compared to control samples using an automated image analysis oil release test. This work enables the effective mechanical-structural manipulation of oleogels in volumes of 10-100 mL, paving the way to possible large-scale lipid-based materials USW treatments.
  • Kekkonen, Tuukka (2021)
    The sub-λ/2 focusing, also known as super resolution, is widely studied in optics, but only few practical realizations are done in acoustics. In this contribution, I show a novel way to produce sub- λ/2 focusing in the acoustic realm. I used an oil-filled cylinder immersed in liquid to focus an incident plane wave into a line focus. Three different immersion liquids were tested: water, olive oil, and pure ethanol. In addition to the practical experiment, we conducted a series of finite element simulations, by courtesy of Joni Mäkinen, to compare to the experimental results.
  • Kivelä, Feliks (2022)
    The crystal structure of magnetite (Fe3O4) involves Fe2+ ions in sites with octahedral (Oh) symmetry and Fe2+ and Fe3+ ions in sites with tetrahedral (Td) symmetry. Magnetite exhibits several interesting physical phenomena, such as the Verwey transition, in which the roles of the different Fe sites are an active subject of research. In the X-ray standing wave (XSW) technique, incoming and diffracted X-ray beams interfere inside a crystal, creating a standing wave with the periodicity of the diffracting atomic lattice. The phase of the wave, i.e. whether the nodes are located on the lattice planes or between them, can be adjusted by finely tuning the diffraction angle. Changing the phase in this way makes it possible to selectively vary the contributions of different atoms and absorption types (dipole versus quadrupole) to the measured total absorption spectrum. Iron K-edge absorption spectra in magnetite were studied in the presence of an XSW in an experiment conducted at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. This thesis presents an analysis of the data gathered during the experiment, with the goal of decomposing the experimentally measured pre-edge peak into its constituent components. The methods used in the analysis include principal component analysis and fitting predicted absorption peaks calculated with the Quanty software to the experimental data. The results show the dipole and quadrupole contributions of the tetrahedral sites responding to changes in the phase of the XSW in opposite ways in a manner consistent with theoretical predictions.
  • Adio, Luqmon (2019)
    Particle Induced X-ray Emission (PIXE) was originally introduced as an ion-beam analytical technique in Lund in the 1970s and has since then been part of the available techniques in many laboratories around the world. The external beam PIXE set-up is used in probing the annual tree rings. The goal is to see the effects of volcanic eruption activities from the perspectives of tree plants here in Finland. In the theory part, I tried to include the description of how volcanoes are formed and created with a bit of volcanic activity history, the growth metabolism mechanism in tree plants and characteristics x-ray productions. The two tree sample used for this experiment were gotten from two different regions of Finland. The first tree is a Pine tree from Parikkala(a small place near Savolinna) in the south-eastern part of Finland and the second tree is a Spruce tree from Pielavesi (place near Kuopio) in the central part of Finland. These samples were carefully prepared for ionisation. The collected spectra data were analysed in a software called PyMCA. PyMCA has been developed by the Software Group of the European Synchrotron Radiation Facility (ESRF). PyMCA is a ready to use and in many aspects state-of-the-art, set of applications implementing most of the needs of X-ray fluorescence data analysis. PyMCA is use to interpret X-ray fluorescence spectra from a diverse array of samples
  • Pesonen, Leevi (2024)
    Rare earth trifluorides are a group of 17 compounds which have intriguing optical, electrical, and luminescence properties. However, realizing these properties in the form of thin films has had its challenges. Overall, research on the subject has been scarce. On the other hand, some rare earth fluoride thin films have found usage in for example optical filters in ultraviolet and infrared wavelengths.In this thesis a review of rare earth fluoride thin films and their deposition methods is made. Potential of the rare earth fluoride thin films is explored starting from the bulk properties of the rare earth fluorides which are compared to the published results for thin films. Additionally, the current status, challenges, and potential of rare earth fluoride thin films is discussed in the light of different deposition methods and their differences. In the experimental part of the thesis, deposition of holmium fluoride thin film by atomic layer deposition (ALD) is studied alongside its properties. In the HoF3 deposition, Ho(thd)3 (thd = 2,2,6,6- tetramethyl-3,5-heptanedionato) and niobium pentafluoride were used as precursors, latter of which was used as an ALD fluoride precursor for the first time.
  • Hällsten, Susanna (2021)
    Chiral assemblies of metal nanoparticles absorb and/or scatter left and right handed circularly polarized light with different intensities usually from the visible light spectral region. This difference in the absorption called circular dichroism (CD) and closely related anisotropy factor (g-factor), which is the CD spectrum normalized with the overall absorption, describe the optical activity of the chiral assemblies. The aim of this thesis was to study and optimize the different structural parameters affecting the g-factor of a chiral gold nanorod (AuNR) dimer to reach the highest possible value. The structure consisted of two AuNRs bound together with a DNA origami in a crossed fingers conformation. The properties studied were silver as a coating material of the AuNRs, the dimensions of the AuNRs, angle between the long axes of the AuNRs and the interparticle distance. The dimensions comparison was studied with different sized AuNRs, the angle was controlled by changing the DNA strands working as a bridge between the two bundles in the DNA origami and the distance between the AuNRs was controlled by the length of the thiol treated DNA strands used for the AuNR binding to the origami. The experiments showed that the best g-factor was achieved with 33×74 nm sized AuNRs with an angle of approximately 55° and an interparticle distance of 24nm. Optimized assembly made a notable increase in the g-factor from 0.05 to 0.12. This is a highest g-factor recorded in a AuNR dimer structure up to date and thus the assembly could be of great use in the chiral sensing field in the future.
  • Pudas, Topi (2024)
    This thesis contributes to the ongoing development of a novel, environmentally friendly e-waste recycling technology. We utilize high-intensity focused ultrasound to locally extract gold from the surface of printed circuit boards via cavitation erosion. Acoustic cavitation erosion is the phenomenon in which the acoustically driven violent collapse of gas bubbles in liquid cause damage to nearby solids. Bubble collapse is preceded by its dramatic growth, which is driven by the rarefactive phase of the acoustic wave. In this work, I investigate the effect of ultrasound frequency on the efficiency of gold extraction. Gold extraction experiments were conducted with three custom-built transducers, with different resonant frequencies [4.2, 7.3, 11.8] MHz. The geometries of the transducers are identical, as were the electrical driving parameters. With each transducer, a sequence of gold extraction experiments was conducted with an increasing number of acoustic bursts (ranging from 100k to 1.9M). The results demonstrate that the lowest frequency (4.2 MHz) is 3.8 and 4.5 times more efficient at extracting gold compared to [7.3, 11.8] MHz, respectively. This dramatic improvement is likely due to larger cavitation bubbles associated with lower frequencies. Larger bubbles in the cavitating zone would be expected to undergo more bubble coalescence due to a higher gas volume ratio. Since the energy of bubble collapse increases with bubble size, increased bubble coalescence should augment the energy of bubble collapse. These results provide valuable insights relating to cavitation research and will guide the ongoing development of our novel e-waste recycling technology.
  • Kinnunen, Outi (2021)
    Maa-aineksessa fosfori on sitoutunut alkuaineisiin, joista rauta on merkittävässä osassa. Fosfori voi vapautua vedessä tai pohja-aineksessa liuenneeseen muotoon aiheuttaen rehevöitymistä. Fosforin vapautumiseen vesistössä vaikuttavat maa-aineksen koostumus, veden ominaisuudet ja hiilen saatavuus. Raudan pitoisuudet ja esiintymismuodot selittävät osittain vesistöjen välisiä eroja rehevöitymisessä. Röntgenabsorptiospektroskopialla voidaan tutkia alkuaineen atomien hapetustilaa, koordinaatiolukua, koordinaatiokemiaa ja atomien välisiä etäisyyksiä. Menetelmässä mitataan absorptiokerrointa energian funktiona. Näytteiden analysoinnissa käytetään yleensä vertailukohtana hyvin tunnettuja referenssien spektrejä. Tulokset ovat luotettavimmat, kun referenssien spektrit ovat mitattu samoilla asetuksilla yhdessä näytteiden kanssa. Tässä työssä on tutkittu yhtätoista (11) eri maa-ainesta röntgenabsorptiospektroskopialla raudan K-reunan lähiympäristössä. Maa-aineksista tutkittiin; 1. käsittelemätön, 2. oksalaattiuutettu, 3. poltettu sekä 4. oksalaattiuutettu ja poltettu versio. Oksalaattiuuton ja polton tarkoituksena oli selventää maa-ainesten välillä olevia eroja. Uuttaminen tarkoittaa oksalaattiuuttoa, jossa maa-aineksesta poistuu heikosti kiteistä rautaa. Polttaminen tarkoittaa näytteen kuumentamista 700 asteeseen, jolloin maa-aineksen rautaoksidit hapettuvat ja kiteytyvät. Näytteet, 44 kpl, mitattiin kolmeen kertaan. Eri maa-aineksien ja niiden eri käsittelyiden välillä havaittiin eroja absorptioreunan energiassa, joka on yhteydessä raudan hapetustilaan. Polttaminen teki absorptiospektreistä keskenään lähes samanlaisia ja tasoitti käsittelemättömissä näytteissä olleita eroja. Oksalaattiuuttamisella ei havaittu olevan vastaavaa vaikutusta. Näytteiden rautamineraalien spektripainoista voidaan päätellä näytteiden mineraalikoostumuksia. Jotta raudan merkitystä fosforin kierrossa voidaan tarkentaa, tarvitaan lisää tutkimusta.
  • Lintala, Aino-Maija (2020)
    Polysiloxanes are silicon-based polymers consisting of R2SiO repeating units. They are commonly used in many commercial applications, for example, as adhesives, additives, or waterproof coatings. This thesis concentrates on polysiloxanes used as optically clear adhesives, which are needed in display applications to, for instance, bond cover lenses to touch panel sensors. This kind of a material needs to have a high refractive index to match glass or plastic, and it has to be transparent and thermally stable. In addition, it must resist degradation and yellowing from UV exposure and humidity. Anionic ring-opening polymerization was used to synthesize optically transparent polysiloxanes with varying side-groups. These polymers exhibited high refractive index values, which were adjusted by changing the amount of phenyl group -containing monomers or with chain terminating agents. End-functionalization reactions were performed for the synthesized polymers to introduce methacrylate groups to the chain ends, which could later be used in crosslinking trials involving a photoinitiator. The results present an effective synthetic route for the ring-opening polymerization for transparent, high refractive index poly(dimethylsiloxane-co-diphenylsiloxane) and poly(methylphenylsiloxane) that could be used as adhesives after selective chain end functionalization and crosslinking reactions. The properties of the synthesized polysiloxanes were characterized with several different methods, such as size exclusion chromatography, rheology, and NMR spectroscopy. End functionalization reactions were performed for some of the synthesized polymers. These were then further characterized to verify the suitability of the reaction.
  • Koivu-Jolma, Mikko (2024)
    One challenge in the research of societal phenomena is to find the balance between realism and tractable models. Molecular dynamics simulations are based on physical theories that use computationally efficient abstractions for interactions. Formulation of human interactions as physical potentials creates an opportunity to apply the computational methods from physics to social sciences. This thesis tries to answer if a simulation model based on physical pair potentials can describe the transgenerational heritance of prenatal alcohol exposure. The society is abstracted to a surface. Individuals can reproduce and die. Their life histories depend on the environment that is presented as a resource lattice with general and alcohol resource particles. The results are promising, showing decent conformity with epidemiological observations. In many cases, an analogical mechanism for societal phenomena can be found from surface physics. Additionally, material physics and epidemiology tackle with similar problems in observation of structures. To this end, this line of research has potential.
  • Raka, Doruntina (2023)
    In nuclear medicine, radiopharmaceuticals are administered to the patient to diagnose or treat various diseases. The radioactive activity of these radiopharmaceuticals is measured using a radionuclide calibrator. In this study, the response of a radionuclide calibrator in different measurement conditions was studied. Code system PENELOPE (2018) that applies Monte Carlo methods in electron and photon transport simulation was used to investigate the response as a function of photon energy emitted by the source, source location, source volume and source container type. These calculated results were compared to corresponding experimental results. Overall, the computational results conformed well with the experimental results. The computational energy-response followed a similar trend to the efficiency curve extracted from the manual of Capintec CRC-25R radionuclide calibrator. The response of the calibrator to a Tc-99m source as a function of both vertical and horizontal displacement was inspected, and the results indicated a cubic and exponential trend, respectively. In both cases, results present that there is an agreeing optimal depth range (14 - 23 cm) at which the source should be located. Within this range, the variation in response remains below 2 %. Furthermore, the central axis of the chamber was deemed horizontally optimal for measurements. In the radius range 0 - 2.1 cm, experimental results showed an increase of 4 % relative to the centre position. Corresponding calculated results presented an increase of about 3 %. The response as a function of volume and container type was calculated for Tc-99m and I-123 source, respectively. In the case of volume-response, computational results presented a decrease of around 0.5 % for volumes between 2 to 5 ml in a plastic syringe. Experimental methods showed a corresponding decrease no greater than 0.8 %. Measuring response in a 15C transparent glass vial instead of a 3 ml plastic syringe, showcased that the response is only 81 % and 75 % of that in the syringe in simulated and experimental results, respectively.
  • Savolainen, Heini (2023)
    Palmitoylation is an important posttranslational modification, which can change the function of proteins by the addition of fatty acids. In this thesis, I studied how palmitoylation affects the behavior of proteins and their interactions with the membranes. I also investigated the molecular mechanism of acetyl-palmitoyl recruitment by DHHC20, an important step in the palmitoyl transfer reaction. To this end, I used atomistic molecular dynamics simulations, which is a common computational method for studying biomolecules. In the first part of the thesis, I present my simulations and free energy calculations that show that palmitoylation enhances the partitioning of cysteines to the membranes and the spontaneous adsorption of amphipathic helices onto the membrane surface. At high levels, membrane cholesterol negatively impacts both of these properties both in the presence and absence of palmitoylation. However, palmitoylation strongly subdues the negative effect of increasing cholesterol. Moreover, palmitoylation helps proteins to maintain their helical conformation upon membrane binding. Overall, palmitoylation appears to be important for membrane interactions and the structural stability of proteins, especially under conditions of high membrane cholesterol. In the second part of my thesis, I investigated how its ligand, acetylpalmitoyl molecules, enters into the binding site of DHHC20. These simulations revealed that a short amphipathic helix at the gate of the ligand binding may play an important role in ligand recruitment and the overall stability of the enzyme. Moreover, I discovered that the protonation state of the cysteine residues that coordinate zinc cofactors is important for the stability of the zinc ions.