Browsing by Author "Ihalainen, Olli"
Now showing items 1-1 of 1
-
Ihalainen, Olli (2019)The Earth’s Bond albedo is the fraction of total reflected radiative flux emerging from the Earth’s Top of the Atmosphere (ToA) to the incident solar radiation. As such, it is a crucial component in modeling the Earth’s climate. This thesis presents a novel method for estimating the Earth’s Bond albedo, utilising the dynamical effects of Earth radiation pressure on satellite orbits that are directly related to the Bond albedo. Where current methods for estimating the outgoing reflected radiation are based on point measurements of the radiance reflected by the Earth taken in the proximity of the planet, the new method presented in this thesis makes use of the fact that Global Positioning Satellites (GPS) together view the entirety of the ToA surface. The theoretical groundwork is laid for this new method starting from the basic principles of light scattering, satellite dynamics, and Bayesian inference. The feasibility of the method is studied numerically using synthetic data generated from real measurements of GPS satellite orbital elements and the imaging data from the Earth Polychromatic Imaging Camera (EPIC) aboard the Deep Space Climate Observatory (DSCOVR) spacecraft. The numerical methods section introduces the methods used for forward modeling the ToA outgoing radiation, the Runge-Kutta method for integrating the satellite orbits and the virtual-observation Markov-chain Monte Carlo methods used for solving the inverse problem. The section also describes a simple clustering method used for classifying the ToA from EPIC images. The inverse problem was studied with very simple models for the ToA, the satellites, and the satellite dynamics. These initial results were promising as the inverse problem algorithm was able to accurately estimate the Bond albedo. Further study of the method is required to determine how the inverse problem algorithm works when more realism is added to the models.
Now showing items 1-1 of 1