Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Author "Jaana, Hautala"

Sort by: Order: Results:

  • Jaana, Hautala (2023)
    Artificial Intelligence (AI) has revolutionized various domains of software development, promising solutions that can adapt and learn. However, the rise of AI systems has also been accompanied by ethical concerns, primarily related to the unintentional biases these systems can inherit during the development process. This thesis presents a thematic literature review aiming to identify and examine the existing methodologies and strategies for preventing bias in iterative AI software development. Methods employed for this review include a formal search strategy using defined inclusion and exclusion criteria, and a systematic process for article sourcing, quality assessment, and data collection. 29 articles were analyzed, resulting in the identification of eight major themes concerning AI bias mitigation within iterative software development, ranging from bias in data and algorithmic processes to fairness and equity in algorithmic design. Findings indicate that while various approaches for bias mitigation exist, gaps remain. These include the need for adapting strategies to agile or iterative frameworks, resolving the trade-off between effectiveness and fairness, understanding the complexities of bias for tailored solutions, and assessing the real-world applicability of these techniques. This synthesis of key trends and insights highlights these specific areas requiring further research.