Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Author "Känsäkoski, Silja"

Sort by: Order: Results:

  • Känsäkoski, Silja (2023)
    Lignin is an abundant aromatic polymer found in renewable biomass sources such as trees and grasses. Lignin is largely formed as a side product in paper and pulping industries, and recent research has been trying to valorize it for value-added products such as fuels and chemicals through catalytic depolymerization. This thesis work consists of two parts: a literature review on lignin and it depolymerization methods and the experimental part where lignin is depolymerized, and the products are analyzed. In the literature review an overview of lignin, its structure and different sources is given. Furthermore, different extraction methods of lignin from the biomass source are reviewed, and more specifically the organosolv process is highlighted. Different products formed in the depolymerization of lignin are presented along with their applications. Depolymerization methods including pyrolysis, oxidative depolymerization, solvolysis and reductive depolymerization are reviewed. Finally, different metal catalysts, with a focus on molybdenum-based ones, used in reductive lignin depolymerization are presented. In the experimental part two molybdenum phosphide catalysts are synthesized and characterized. They are used in the depolymerization of fraunhoferk130 and GVL lignin using ethanolysis in a batch or autoclave reactor. The mass balance of product fractions and monophenol yields are presented. Monophenol yields ranged from 3.5 wt.% to 22.8 wt.%. Additional hydrogen pressure suppresses repolymerization and char formation but has negative impact on monomer yields so the true role of hydrogen gas remains unclear. Increasing reaction temperature led to smaller molar mass but higher char formation. The different catalysts used are compared in the results with the help of the monomer yields, mass balance and molar masses. Overall, the molybdenum-based catalysts showed promise as monomer yields were in lieu of those found in literature and can be synthesized with lower costs than noble metal catalysts.