Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Author "Müller, Mitro"

Sort by: Order: Results:

  • Müller, Mitro (2020)
    A warming trend of annual average surface temperatures since pre-industrial times has been observed globally. High-arctic area of Svalbard, Norway is undergoing amplified change of annual average temperatures when compared to the global average. Decline of glaciers in western Svalbard has been ongoing for several decades, and in the recent past, rapid biological successions have taken place. These changes have likely had effect on regional scale carbon dynamics at Svalbard’s moss tundra areas. Possibly indicating onset of paludification process of these areas. However, palaeoecological studies from the area are scarce, and the response of high-latitude moss tundra areas to past or ongoing climate change, are still not fully understood. This thesis aimed to bring forward information of changes in recent organic matter and carbon accumulation rates at Svalbard, Norway. Soil profiles were collected from four moss tundra sites, located on coastal areas and fjords descending towards Isfjorden, on the western side of Spitsbergen island. Radiocarbon (14C) and lead (210Pb) dating methods with novel age-depth modelling and soil property analyses, were used to reconstruct recent organic matter and carbon accumulation histories from 1900 AD to 2018 AD. Accumulation histories were supported by meteorological measurements from the area. In addition, annual maximum value Normalized Difference Vegetation Indices for 1985 AD till 2018 AD period were produced, to study vegetation succession in the recent past. Lastly, possibility to predict spatiotemporal variation of soil carbon accumulation with satellite derived vegetation indices was assessed. Development from predominantly mineral soils to organic soils was distinguishable within multiple soil profiles, pointing to potential paludification. Recent apparent carbon accumulation rates showed an increasing trend. Supporting meteorological data and literature suggest that regional abiotic and biotic factors in synergy with weather and climate are contributing to this observed trend. Vegetation indices pointed to major changes in vegetation composition and productivity. However, investigation of relationship between recent carbon accumulation rates and vegetation indices did not produce reliable results. Spatiotemporal heterogeneity of carbon soil-atmosphere fluxes presently imposes large challenges for such modelling. To alleviate this problem, efforts for more efficient synergetic use of field sampling and remote sensing -based material should be undertaken, to improve modelling results.