Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Author "Mylläri, Juha"

Sort by: Order: Results:

  • Mylläri, Juha (2022)
    Anomaly detection in images is the machine learning task of classifying inputs as normal or anomalous. Anomaly localization is the related task of segmenting input images into normal and anomalous regions. The output of an anomaly localization model is a 2D array, called an anomaly map, of pixel-level anomaly scores. For example, an anomaly localization model trained on images of non-defective industrial products should output high anomaly scores in image regions corresponding to visible defects. In unsupervised anomaly localization the model is trained solely on normal data, i.e. without labelled training observations that contain anomalies. This is often necessary as anomalous observations may be hard to obtain in sufficient quantities and labelling them is time-consuming and costly. Student-teacher feature pyramid matching (STFPM) is a recent and powerful method for unsupervised anomaly detection and localization that uses a pair of convolutional neural networks of identical architecture. In this thesis we propose two methods of augmenting STFPM to produce better segmentations. Our first method, discrepancy scaling, significantly improves the segmentation performance of STFPM by leveraging pre-calculated statistics containing information about the model’s behaviour on normal data. Our second method, student-teacher model assisted segmentation, uses a frozen STFPM model as a feature detector for a segmentation model which is then trained on data with artificially generated anomalies. Using this second method we are able to produce sharper anomaly maps for which it is easier to set a threshold value that produces good segmentations. Finally, we propose the concept of expected goodness of segmentation, a way of assessing the performance of unsupervised anomaly localization models that, in contrast to current metrics, explicitly takes into account the fact that a segmentation threshold needs to be set. Our primary method, discrepancy scaling, improves segmentation AUROC on the MVTec AD dataset over the base model by 13%, measured in the shrinkage of the residual (1.0 − AUROC). On the image-level anomaly detection task, a variant of the discrepancy scaling method improves performance by 12%.