Browsing by Author "Ojala, Juha"
Now showing items 1-1 of 1
-
Ojala, Juha (2022)Photocatalysis is a versatile method to use solar energy for chemical processes. Photocatalytic materials absorb light to generate energetic electron-hole pairs that can be used for redox reactions in production of hydrogen and other chemicals, degradation of pollutants, and many other applications. BiVO4 is a visible light absorbing oxide semiconductor with a band gap of about 2.4 eV, and it has received a lot of attention as a standalone photocatalyst and as a photoanode material. The literature part of this thesis explores how the electronic structure of semiconductors and the different processes in photocatalysis together affect the efficiency of the method. Semiconductor materials are classified based on their chemical composition and compared by selecting most researched materials as examples. Various strategies to improve the photocatalyst material properties are also discussed. Many strategies, such as nanostructured photocatalysts, benefit from deposition of semiconductor thin films. Atomic layer deposition (ALD), as a highly conformal and controllable chemical vapor deposition method, is an excellent choice for depositing semiconductors and various interfacial layers. The literature review also includes a survey of ALD processes for Bi2O3 and V2O5 and a thorough analysis of the existing BiVO4 ALD processes. From the selection of binary ALD processes, bismuth(III) 2,3-dimethyl-2-butoxide (Bi(dmb)3), tetrakis(ethylmethylamido)-vanadium(IV) (TEMAV), and water were chosen as precursors to develop a new ALD process for BiVO4. The binary processes were combined in various metal precursor ratios both completely mixed in supercycles and as nanolaminates, and the resulting films were annealed to crystallize the BiVO4. X-ray diffraction was used to characterize the crystalline phases of the films, and it was noticed that TEMAV reacts with Bi2O3 to make metallic bismuth, but it is reoxidized by annealing. Composition of the films was investigated with energy dispersive X-ray spectrometry and time-of-flight elastic recoil detection analysis (ToF-ERDA). Some sensitivity to process conditions was observed in the deposition, as the metal stoichiometry varied in unexpected manner between some sets of experiments. ToF-ERDA depth profiles also revealed that mixing of the nanolaminate layers was incomplete with annealing temperatures below 450 °C and with laminate layers over 10 nm in thickness. Scanning electron microscopy was used to study the morphology of the films and revealed a granular, non-continuous structure. The optical properties of the films grown on soda-lime glass were investigated with UV-vis spectrophotometry. The band gaps of the films were estimated to be 2.4–2.5 eV. The nanolaminate approach to depositing the films was deemed the best, as it avoids most of the reduction of bismuth by TEMAV. However, it is still not clear why this process is so sensitive to process conditions. This should be investigated to further optimize the film stoichiometry. The morphology of the films might be improved by using different substrates, but it is not a critical aspect of the process as there are methods to passivate the exposed substrate surface. Overall, this process has potential to deposit excellent BiVO4 films that are suitable for further research pertaining their photocatalytic properties and modifications such as nanostructured or doped photoanodes.
Now showing items 1-1 of 1