Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Author "Rantanen, Olli"

Sort by: Order: Results:

  • Rantanen, Olli (2020)
    Uuden tieliikennelain mukanaan kunnille tuomat velvoitteet, kuten liikenteenohjaukseen käytetyn välineistön (esim. liikennemerkkien) ylläpitovastuu, siirtyy kunnille 1.6.2020. Kenttäinventoimalla suoritettava liikennemerkkien kunnon ja sijainnin selvittäminen on usein työlästä ja tuottaa kustannuksia. Tässä tutkimuksessa selvitetään, miten näitä voidaan automatisoidusti inventoida panoraamakuvilta. Samalla verrataan panoraamakuvien ja niistä luotujen osakokonaisuuksien (pilkottujen kuvien) soveltuvuutta kyseiseen tarkoitukseen. Tunnistuksen tuloksena syntyviä havaintoja verrataan Väyläviraston ylläpitämään avoimeen liikennemerkkiaineistoon sekä tunnistettujen kohteiden sijainti lasketaan kuvilta. Työssä tutustutaan myös eri kohteentunnistusalgoritmien toimintaan sekä selvitetään, miten liikennemerkkien automaattisessa tunnistuksessa on onnistuttu muissa tutkimuksissa. Aineistona toimii Inkoosta otettujen panoraamakuvien lisäksi Mapillaryn toimittamat kuva-aineistot, joita käytetään YOLOv3-kohteentunnistusalgoritmin koulutukseen ja testaukseen. Työssä esitellään myös YOLOv3-koulutuksen toteuttaminen ja käydään läpi tarvittavat ohjelmistot sen implementoinnissa toiseen työhön. Koulutus vaatii riittävän GPU:n lisäksi erilaisia ohjelmia sekä runsaasti kuva-aineistoa, jotta ylisovittamisen riskiltä vältytään. Tulosten perusteella pilkotut kuvat tuottavat paremman tuloksen verrattuna panoramakuviin. Pilkotuilta kuvilta jokainen ajoreitin varrella ollut kärkikolmio tunnistettiin, kun taas panoraamakuvilta tämä ei onnistunut. Lisäksi algoritmin kyky sijoittaa kärkikolmion sijainti kuvalle oli varsin hyvä saavuttaen keskimäärin IoU-arvon 0,86, kun se panoraamoilla oli 0,52. Samoin tulosten luotettavuutta kuvaavat Precision- ja Recall-arvot olivat huomattavasti korkeammat kuin panoraamakuvilla. Työssä havaittiin lisäksi, että Väyläviraston avoimesta aineistosta puuttuu useita kärkikolmioita. Kuvilta onnistuttiin myös laskemaan muutaman metrin tarkkuudella kärkikolmioiden sijainti maastossa. Tutkimuksen perusteella kohteentunnistusalgoritmit tuottavat merkittävää hyötyä kohteiden automaattisessa tunnistuksessa. Algoritmien hyödyntämistä tulevaisuudessa mahdollistaa lisääntyvä kuva-aineistojen määrä sekä laskentatehon kasvu. Hyödyntämällä kohteentunnistusalgoritmeja kuntien on mahdollista helpottaa uuden tieliikennelain velvoitteiden noudattamista. Tämän myötä algoritmien suosio voi kasvaa tulevaisuudessa. Kohteentunnistusalgoritmien implementointiin tarvitaan kuitenkin ohjeistusta ja käyttötapauksia, joita tämä tutkimus tuloksillaan edistää.
  • Rantanen, Olli (2019)
    Lukion fysiikan kokeen tekeminen vaatii opiskelijalta monipuolisempia sisällöntuotannon taitoja kuin useimmat muut lukuaineet. Koevastauksiin tyypillisesti yhdistetään sanallista kirjoitusta, matemaattisten kaavojen symbolista johtamista, likiarvojen laskemista sekä tilannekuvapiirroksia. Kaikkia näitä on aiemmin voitu tuottaa yhdellä yhteisellä työkalulla eli lyijykynällä. Uusi opetussuunnitelma 2016 on kuitenkin muuttanut tämän, ja nykyään lukioiden kokeet sekä ylioppilaskokeet suoritetaan sähköisesti Abitti -koejärjestelmällä, jota käytetään USB-tikulle asennetun Digabi -käyttöjärjestelmän sisällä. Fysiikan kokeentekijän tulee nykyään hallita koneellisen kirjoittamisen lisäksi matemaattinen kirjoittaminen, numeerinen laskeminen, data-analyysi sekä digitaalinen kuvantuottaminen. Jokaista tarkoitusta varten kokelaan tulee itse valita joku Digabin tarjoamista ohjelmista. Valikoimaa on niin paljon, että opettajat keskittyvät useimmiten vain yhden tai kahden opettamiseen, mikä heijastuu usein opiskelijan omassa valinnassa. Digabin ohjelmille esitetään tässä opinnäytetyössä yleisiä käytettävyyden kriteerejä, joiden pohjalta on mahdollista tehdä arviointia hyödyllisyydestä. Ei enää riitä opiskella pelkästään koealueen aihesisältöä, vaan nykyään on opittava myös merkittävä määrä sisällöntuotto-ohjelmien tehokasta käyttöä. Tehokas ja asianmukainen Digabin ohjelmien käyttö mahdollistaa sen, että oman substanssiosaamisen saa esitettyä tarpeeksi hyvin ja nopeasti sähköisissä kokeissa. Kääntöpuolena on se, että kokeen tekemisen aikana opiskelijalla on riski suurempaan puhtaasti metodeista kumpuavaan kognitiiviseen kuormitukseen, joka voi pahimmillaan haitata kokeen suorittamista omaa osaamista vastaavalla tavalla. Ohjelmavalintoja voi ohjata pienimmän vastarinnan periaate, jolloin opiskelija näennäisesti valitsee itselleen matalimman oppimiskynnyksen ohjelman ymmärtämättä esimerkiksi toisten ohjelmien pikatoimintojen hyödyllisyyttä. Tämä korostuu erityisesti matemaattisessa tuottamisessa, missä vastakkain ovat kaavaeditorit ja ohjelmointisyntaksiin perustuvat ohjelmat. Tutkimusosio sisältää kyselyaineiston, joka on kerätty internetissä sijaitsevalta julkiselta keskustelufoorumilta. Tämä 52 vastaajan aineisto koostui opiskelijoista 43 eri lukiosta ympäri Suomea. Kyselyssä kartoitetaan monipuolisesti vastaajien subjektiivisia kokemuksia digitaalisesta työskentelystä ja koetusta kognitiivisesta kuormituksesta eri tyyppisten koetehtävien suhteen. Tätä aineistoa verrataan myös muihin referenssiaineistoihin. Vaikka primäärinen vastaajajoukko osoittautui olevan keskimääräistä harrastuneempaa tietoteknisten taitojen suhteen, vastauksien perusteelle he kokivat suurempaa ja eri tavalla painottunutta kognitiivista kuormitusta Abitti -kokeissa kuin perinteisissä kokeissa. Digitaalinen kuvien tuottaminen erottuu kognitiivisesti kuormittavimpana tekijänä. Lukiolaisilla on hyvin vaihteleva osaamistaito grafiikkaohjelmien suhteen ja tämä korostuu tärkeimpänä jatkokehityksen kohteena lukiokoulutuksessa.