Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Author "Remes, Jere"

Sort by: Order: Results:

  • Remes, Jere (2015)
    Even after 50 years, there is still no standard, analytically tractable way to treat Quantum Chromodynamics (QCD) non-numerically besides perturbation theory. In the high-energy regime perturbation theory agrees with experimental results to a great accuracy. However, at low energies the theory becomes strongly coupled and therefore not computable by perturbative methods. Therefore, non-perturbative methods are needed, and one of the candidates is light-front holography. In this thesis, the basics of light-front quantisation and holography are discussed. Light-front quantisation takes light-cone coordinates and the Hamiltonian quantisation scheme as its basis and the resulting field theory has many beneficial properties like frame-independence. Still, to extract meaningful results from the light-front QCD, one needs to apply bottom-up holographic methods. Last part of this work focuses on the applicability of light-front holographic QCD in the area of dark matter. We find that one can build a secluded SU(3) sector consisting of a doublet of elementary particles, analogous to quarks and gluons. Due to a global symmetry, the lightest stable particle is analogous with ordinary neutron. It meets the basic requirements for being a WIMP candidate when its mass is higher than 5 TeV.