Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by study line "Astronomi"

Sort by: Order: Results:

  • Ihalainen, Olli (2019)
    The Earth’s Bond albedo is the fraction of total reflected radiative flux emerging from the Earth’s Top of the Atmosphere (ToA) to the incident solar radiation. As such, it is a crucial component in modeling the Earth’s climate. This thesis presents a novel method for estimating the Earth’s Bond albedo, utilising the dynamical effects of Earth radiation pressure on satellite orbits that are directly related to the Bond albedo. Where current methods for estimating the outgoing reflected radiation are based on point measurements of the radiance reflected by the Earth taken in the proximity of the planet, the new method presented in this thesis makes use of the fact that Global Positioning Satellites (GPS) together view the entirety of the ToA surface. The theoretical groundwork is laid for this new method starting from the basic principles of light scattering, satellite dynamics, and Bayesian inference. The feasibility of the method is studied numerically using synthetic data generated from real measurements of GPS satellite orbital elements and the imaging data from the Earth Polychromatic Imaging Camera (EPIC) aboard the Deep Space Climate Observatory (DSCOVR) spacecraft. The numerical methods section introduces the methods used for forward modeling the ToA outgoing radiation, the Runge-Kutta method for integrating the satellite orbits and the virtual-observation Markov-chain Monte Carlo methods used for solving the inverse problem. The section also describes a simple clustering method used for classifying the ToA from EPIC images. The inverse problem was studied with very simple models for the ToA, the satellites, and the satellite dynamics. These initial results were promising as the inverse problem algorithm was able to accurately estimate the Bond albedo. Further study of the method is required to determine how the inverse problem algorithm works when more realism is added to the models.
  • Kukkola, Antti (2023)
    A stream of charged particles known as the solar wind constantly flows with supersonic speed in our solar system. As the supersonic solar wind encounters Earth's magnetic field, a bow shock forms where the solar wind is compressed, heated and slowed down. Not all ions of the solar wind pass through the shock but rather a portion are reflected back upstream. What happens to the reflected ions depends on the magnetic field geometry of the shock. In the case where the angle between the upstream magnetic field and the shock normal vector is small, the reflected ions follow the magnetic field lines upstream and form a foreshock region. In this case the shock is called quasi-parallel. In the case of a quasi-perpendicular shock, where the angle is large, the reflected ions gyrate back to the shock, accelerated by the convection electric field. Upon returning to the shock, the ions have more energy and either pass through the shock or are reflected again, repeating the process. Ion reflection is important for accelerating ions in shocks. In this work we study the properties and ion reflection of the quasi-perpendicular bow shock in Vlasiator simulations. Vlasiator is a plasma simulation which models the interaction between solar wind and the Earth's magnetic field. The code simulates the dynamics of plasma using a hybrid-Vlasov model, where ions are represented as velocity distribution functions (VDF) and electrons as magnetohydrodynamic fluid. Two Vlasiator runs are used in this work. The ion reflection is studied by analysing VDFs at various points in the quasi-perpendicular shock. The analysis is performed with reflections in multiple different frames. A virtual spacecraft is placed in the simulation to study shock properties and ion dynamics, such as the shock potential and ion reflection efficiency. These are compared to spacecraft observations and other simulations to test how well Vlasiator models the quasi-perpendicular bow shock. We find that the ion reflection follows a model for specular reflection well in all tested frames, especially in the plane perpendicular to the magnetic field. In addition, the study was extended to model second specular reflections which were also observed. We conclude that the ions in Vlasiator simulations are nearly specularly reflected. The properties of the quasi-perpendicular bow shock are found to be in quantitative agreement with spacecraft observations. Ion reflection efficiency is found to match observations well. Shock potential investigations revealed that spacecraft observations may have large uncertainties compared to the real shock potential.
  • Suortti, Joonas (2020)
    Core galaxies are bright elliptical galaxies that contain a shallow central surface brightness profile. They are expected to form in mergers of massive gas-poor elliptical galaxies that contain supermas- sive black holes (SMBHs) in their respective centres. During the merger process, these black holes form a coalescing binary, which causes the ejection of stars from the centre of the galaxy merger in complex three-body interactions, resulting in the creation of a low-luminosity core. I have studied whether core galaxies can form according to the formation model described above. I analysed the results of seven galaxy merger simulations done using KETJU, a simulation code specifically made for studying the dynamics of supermassive black holes in galaxies. KETJU is a regularised tree-code, combining both the GADGET-3 tree-code and an AR-CHAIN integrator. This allows for the simultaneous simulation of both general galactic dynamics and accurate particle motion near black holes, respectively. All seven simulations consisted of a merger of two identical galaxies. Six of the simulations had galaxies with equal mass central SMBHs, where the mass of the black holes changed from one simulation to another, and ranged from 8.5 × 10 8 M to 8.5 × 10 9 M . For the sake of comparison, the galaxies in the seventh simulation did not contain SMBHs. The other properties of the merged galaxies were determined in such a way, that the resulting merger remnants would be as similar as possible to the well studied core galaxy NGC 1600. Naturally, these properties were identical across all of the simulation runs. By calculating the surface brightness profiles of the merger remnants in the simulation results, I found out that only simulations that contained SMBHs produced remnants with cores. Furthermore, I identified a clear positive correlation between the size of the core and the mass of the coalescing binary SMBH. Both of these results corroborate the theory, that the cores are formed by interacting SMBH binaries. This interpretation of the results was further enforced by the fact that, according to their velocity anisotropy profiles, stellar orbits near the centre of the remnants were tangentially dominated, implying that stellar particles on more radial orbits had been ejected from the system. I also generated 2D maps of the stellar line-of-sight velocity distributions in the simulated merger remnants. These maps showed kinematic properties similar to observed core galaxies, such as "kinematically distinct cores". Finally, I compared both photometric and kinematic properties of the simulated merger remnant containing the largest SMBH binary to the observed properties of NGC 1600. I found that the simulation and the observations agree well with each other. Since the properties of the simulated merger remnants follow theoretical expectations and is in general good agreement with the obser- vations, I conclude that the formation of the cores in bright elliptical galaxies is likely caused by coalescing binary black holes in dry mergers of elliptical galaxies.