Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "Causal structure discovery"

Sort by: Order: Results:

  • Melkas, Laila (2021)
    Multiple algorithms exist for the detection of causal relations from observational data but they are limited by their required assumptions regarding the data or by available computational resources. Only limited amount of information can be extracted from finite data but domain experts often have some knowledge of the underlying processes. We propose combining an expert’s prior knowledge with data likelihood to find models with high posterior probability. Our high-level procedure for interactive causal structure discovery contains three modules: discovery of initial models, navigation in the space of causal structures, and validation for model selection and evaluation. We present one manner of formulating the problem and implementing the approach assuming a rational, Bayesian expert which assumption we use to model the user in simulated experiments. The expert navigates greedily in the structure space using their prior information and the structures’ fit to data to find a local maximum a posteriori structure. Existing algorithms provide initial models for the navigation. Through simulated user experiments with synthetic data and use cases with real-world data, we find that the results of causal analysis can be improved by adding prior knowledge. Additionally, different initial models can lead to the expert finding different causal models and model validation helps detect overfitting and concept drift.