Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "Central Finland Granitoid Complex"

Sort by: Order: Results:

  • Karvinen, Seppo (2019)
    The Central Finland Granitoid Complex (CFGC) is a large (44,000 km2) plutonic core of a Svecofennian (Paleoproterozoic, 1.91–1.82 Ga) arc complex, formed from collisions of several volcanic arcs and their accretion over the Karelian craton. The CFGC consists mostly of granitic to granodioritic rock types. Mafic-ultramafic plutonic rock types are not common, and they consist of mostly small gabbro-diorite intrusions, which may have ultramafic parts. There are two distinct belts around the CFGC, where Ni-Cu potential mafic-ultramafic intrusions are situated – Vammala and Kotalahti. The intrusions within these belts were formed during the height of magmatism within the CFGC (1.89–1.87 Ga). They host Ni-Cu mineralizations, some of which have been economically exploited. The mineralizations are hosted by olivine-rich ultramafic cumulates. The intrusions formed from hydrous tholeiitic basalts (10–12 wt-% MgO) with arc-type trace element chemistry. The difference between Vammala and Kotalahti type intrusions (clinopyroxene and orthopyroxene-dominated, respectively) are attributed to the rock type of the assimilated country rock. In this thesis, three previously unknown or poorly studied mafic-ultramafic intrusions (Matokulma, Palojärvi, and Hongonniittu) within the CFGC are studied in detail. The petrology, similarity to Vammala-Kotalahti type intrusions, parental magma compositions, ore potential, and petrogenesis of the intrusions are described. Rock samples and field observations were gathered during the summer of 2017. Whole-rock geochemistry, mineral geochemistry, isotope geochemistry, and geophysics are used to describe the petrology of the intrusions. Matokulma and Palojärvi intrusions are studied in detail, compared to Hongonniittu intrusion, which was not studied as intricately. The Matokulma intrusion is the least evolved (whole-rock median Mg#=72) of the studied intrusions and consists of tholeiitic melagabbros where clinopyroxene±orthopyroxene and plagioclase are the main cumulus phases within interstitial, magmatic amphibole (magnesiohastingsite to pargasite in composition). Orthopyroxene and plagioclase are intercumulus phases in some samples. There are also mafic dikes that intrude the tonalitic country rock that surrounds the gabbro. The dikes are similar to the gabbros in geochemistry although they are generally more evolved. Trace element geochemistry suggests that the gabbros and dikes are genetically connected, and the dikes possibly represent the residual magmas of the gabbros. The Palojärvi intrusion is noticeably more evolved than the Matokulma intrusion (median Mg#=49), which is apparent in the iron and titanium rich mineral and whole-rock geochemistry. The strongly tholeiitic melagabbros are composed of both orthopyroxene and clinopyroxene as cumulus phases with plagioclase and common Fe-Ti oxide, often within interstitial magmatic amphibole (magnesio-hastingsite to magnesioferri-hornblende in composition). The Fe-Ti oxides are mostly ilmenomagnetite but both magnetite and ilmenite grains are present in same samples. Based on a few mineral analyzes, the ilmenomagnetite contains up to 1.4 wt-% V2O3. U-Pb age determination samples from a leucogabbro dike within the intrusion and granite that crosscuts the intrusion yielded weighted average 206Pb/207Pb ages of 1883.4±4.8 Ma and 1893.8±7.1 Ma, respectively. The age results are in contrast to the intrusive relationship observed in the field. However, considering the margin of error of the results, the granite can be younger than the gabbro, 1887 Ma and 1888 Ma, respectively. The age of ca. 1.89 Ga is at the early stage of the most voluminous mafic-ultramafic magmatism in the Svecofennian terrane. The parental magmas of the Matokulma and Palojärvi intrusions were evolved and contained approximately 5 wt-% and 2 wt-% MgO, respectively. The presence of magmatic amphiboles in most samples indicate that the parental magmas were hydrous. Samples from all intrusions plot similarly in primitive mantle normalized Rare Earth Element (REE) and Normal-Mid-Ocean Ridge Basalt (NMORB) normalized spider diagrams. Similar patterns indicate a similar source for the parental magmas. The trace element geochemistry has signatures of subduction related fluid metasomatism. The rocks are enriched in large ion lithophile elements (LILE) and depleted in High Field Strength Elements (HFSE). These geochemical characteristics indicate that the studied intrusions crystallized from a hydrous, NMORB-like evolved basaltic magma, which has experienced fluid metasomatism. The studied intrusions differ from olivine-rich ultramafic cumulates of Vammala and Kotalahti type intrusions based on their more evolved, gabbroic composition and because of this, they are not Ni-Cu ore potential. Palojärvi may host a Fe-Ti-V mineralization, if there are magnetite rich layers within the intrusion.
  • Pietilä, Maija (2020)
    Geological Survey of Finland conducted bedrock mapping in the eastern parts of Central Finland Granitoid Complex (CFGC) and the area next to the Archean craton in the 1990s. The area consists mainly of Paleo-proterozoic paragneisses, with minor volcanic rocks present. The granitoids belonging to the Central Finland Granitoid Complex make up part of the bedrock in the area. The granitoids of CFGC are divided into a 1.89-1.88 Ga syn-kinematic group, and a crosscutting, 1.88-1.87 Ga post-kinematic group. In this Master’s thesis, three post-kinematic granitoid intrusions of Löytölamminvuori, Sorsakoski and Karvalevä are studied, covering their lithological, petrographical and geochemical features. The intrusions are non-foliated, porphyritic granites and quartz-monzonites, with a minor mafic phase of mostly dioritic composition in the Karvalevä intrusion. The main mafic silicates in the granite phase are biotite and hornblende, in the quartz-monzonite and mafic phases also clino- and orthopyroxene are present. Resembling the other post-kinematic plutons of the CFGC, the studied intrusions are geochemically high in Al2O3, FeO and K2O, and low in MgO, CaO and Sr. One U-Pb age of 1876+6 Ma has been measured for the Löytölamminvuori intrusion, which places the intrusion at the same time frame as the other post-kinematic plutons. Geochemically the intrusions show A-type affinity and close similarities to the post-kinematic pluton Types 2 and 3, fitting best with the Type 3a, which is transitional between the two. The magmas forming Löytölamminvuori, Sorsakoski and Karvalevä were derived from partial melting of mantle derived basalts, which underwent crustal contamination by partial melts from the lower crust. Slight deviation in composition from the strictly A-type magma and the volcanic arc affinity can be explained by the crustal component. The mafic phases show more primitive geochemistry, and thus present the mantle-derived source component with less crustal assimilation in the source. The intrusions show signs of bimodal mafic-felsic magmatism, the dioritic phases in Karvalevä intrusion and one syn-plutonic dyke in Sorsakoski intrusion representing the mafic component. The mafic magmatism was cogenetic with the felsic phases, but not comagmatic, the diorites intruding simultaneously but slightly after the felsic phases. The mafic phases show a continuum in chemical composition to the granites and quartz-monzonites, but with a slight compositional gap.