Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "Deblurring"

Sort by: Order: Results:

  • Seshadri, Sangita (2020)
    Blurring is a common phenomenon during image formation due to various factors like motion between the camera and the object, or atmospheric turbulence, or when the camera fails to have the object in focus, which leads to degradation in the image formation process. This leads to the pixels interacting with the neighboring ones, and the captured image is blurry as a result. This interaction with the neighboring pixels, is the 'spread' which is represented by the Point Spread Function. Image deblurring has many applications, for example in Astronomy, medical imaging, where extracting the exact image required might not be possible due to various limiting factors, and what we get is a deformed image. In such cases, it is necessary to use an apt deblurring algorithm keeping all necessary factors like performance and time in mind. This thesis analyzes the performance of learning and analytical methods in Image deblurring Algorithm. Inverse problems would be discussed at first, and how ill posed inverse problems like image deblurring cannot be tackled by naive deconvolution. This is followed by looking at the need for regularization, and how it is necessary to control the fluctuations resulting from extreme sensitivity to noise. The Image reconstruction problem has the form of a convex variational problem, and its prior knowledge acting as the inequality constraints which creates a feasible region for the optimal solution. Interior point methods iterates over and over within this feasible region. This thesis uses the iRestNet Method, which uses the Forward Backward iterative approach for the Machine learning algorithm, and Total Variation approach implemented using the FlexBox tool for analytical method, which uses the Primal Dual approach. The performance is measured using SSIM indices for a range of kernels, the SSIM map is also analyzed for comparing the deblurring efficiency.