Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "Polygenic risk scores"

Sort by: Order: Results:

  • Suhonen, Sannimari (2023)
    Polygenic risk scores (PRSs) estimate the genetic risk of an individual for a certain polygenic disease trait by summing up the effects of multiple variants across the genome affecting the disease risk. Currently, polygenic risk scores (PRSs) are calculated from imputed array genotyping data which is inexpensive to produce use and has standard procedures and pipelines available. However, genotyping arrays are prone to ascertainment bias, which can also lead to biased PRS results in some populations. If PRSs are utilized in healthcare for screening rare diseases, usage of whole-genome sequencing (WGS) instead of array genotyping is desirable, because also individual samples can be analyzed easily. While high-coverage WGS is still significantly more expensive than array genotyping, low-coverage whole genome sequencing (lcWGS) with imputation has been proposed as an alternative for genotyping arrays. In this project, the utility of imputed low-coverage whole-genome sequencing (lcWGS) data in PRS estimation compared to genotyping array data and the impact of the choice of imputation tool for lcWGS data was studied. Down-sampled WGS data with six different low coverages (0.1x-2x) was used to represent lcWGS data. Two different pipelines were used in genotype imputation and haplotype phasing: in the first one, pre-phasing and imputation were performed directly for the genotype likelihoods (GLs) calculated from the down-sampled data, whereas in the second one, the GLs were converted to genotype calls before imputation and phasing. In both pipelines, PRS for 27 disease phenotypes were calculated from the imputed and phased lcWGS data. Imputation and PRS calculation accuracy of the two pipelines were calculated in relation to both genotyping array and high-coverage whole-genome sequencing (hcWGS) data. In both pipelines, imputation and PRS calculation accuracy increased when the down-sampled coverage increased. The second imputation and phasing pipeline lead to better results in both imputation and PRS calculation accuracy. Some differences in PRS accuracy between different phenotypes were also detected. The results show similar patterns to what is seen in other similar publications. However, not quite as high imputation and PRS accuracy as seen in earlier studies could be attained, but possible limitations leading to lower accuracy could be identified. The results also emphasize the importance of choosing suitable imputation and phasing methods for lcWGS data and suggest that methods and pipelines designed particularly for lcWGS should be developed and published.
  • Detrois, Kira Elaine (2023)
    Background/Objectives: Various studies have shown the advantage when incorporating polygenic risk scores (PRSs) in models with classic risk factors. However, systematic comparisons of PRSs with non-genetic factors are lacking. In particular, many studies on PRSs do not even report the predictive performance of the confounders, such as age and sex, included in the model, which are already very predictive for most diseases. We looked at the ability of PRSs to predict the onset of 18 diseases in FinnGen R8 (N=342,499) and compared PRSs with the known non-genetic risk factors, age, sex, Education, and Charlson Comorbidity Index (CCI). Methods: We set up individual studies for the 18 diseases. A single study consisted of an exposure (1999-2009), a washout (2009-2011), and an observation period (2011-2019). Eligible individuals could not have the selected disease of interest inside the disease-free period, which ranged from birth until the beginning of the observation period. We then defined the case and control status based on the diagnoses in the observation period and calculated the phenotypic scores during the exposure period. The PRSs were calculated using MegaPRS and the latest publicly available genome-wide association study summary statistics. We then fitted separate Cox proportional hazards models for each disease to predict disease onset during the observation period. Results: In FinnGen, the model’s predictive ability (c-index) with all predictors ranged from 0.565 (95%CI: 0.552-0.576) for Acute Appendicitis to 0.838 (95% CI: 0.834-0.841) for Atrial Fibrillation. The PRSs outperformed the phenotypic predictors, CCI, and Education, for 6/18 diseases and still significantly enhance onset prediction for 13/18 diseases when added to a model with only non-genetic predictors. Conclusion: Overall, we showed that for many diseases PRSs add predictive power over commonly used predictors - such as age, sex, CCI, and Education. However, many important challenges must be addressed before implementing PRSs in clinical practice. Notably, we will need disease-specific cost- benefit analyses and studies to assess the direct impact of including PRSs in clinical use. Nonetheless, as more research is being conducted, PRSs could play an increasingly valuable role in identifying individuals at higher risk for certain diseases and enabling targeted interventions to improve health outcomes.