Browsing by Subject "Radiation damage"
Now showing items 1-1 of 1
-
(2021)The plasma-facing materials of future fusion reactors are exposed to high doses of radiation. The characterization of the radiation damage is an essential part in the study of fusion relevant materi- als. Electron microscopy is one of the most important tools used for characterization of radiation damage, as it provides direct observations of the microstructure of materials. However, the char- acterization of defects from electron microscope images remains difficult. Simulated images can be used to bridge the gap between experimental results and models. In this thesis, scanning transmission electron microscope (STEM) images of radiation damage were simulated. Molecular dynamics simulations were employed in order to create defects in tungsten. STEM images were simulated based on the created systems using the multislice method. A data- base of images of h001i dislocation loops and defects produced from collision cascade simulations was generated. The simulated images provide insight into the observed contrast of the defect structures. Differences in the image contrast between vacancy and interstitial h001i dislocation loops were reported. In addition to this, the results were compared against experimental images and used in identification of a dislocation loop. The simulated images demonstrate that it is feasible to simulate STEM images of radiation damage produced from collision cascade simulations.
Now showing items 1-1 of 1