Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "Suomenlahti"

Sort by: Order: Results:

  • Huurtomaa, Satu (2019)
    The Baltic Sea is a vulnerable marine environment and susceptible to pollution. The situation is especially severe in the Gulf of Finland due to a large catchment area compared to the size of the Gulf. The north eastern Gulf of Finland has been described as one of the most contaminated areas of the entire Baltic Sea, with extensive pollution load via river Kymi in the past. Still today, the currents bring contaminants from the eastern part of the Gulf – the Neva estuary and the Bay of Viborg. The concentrations of V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Mo, Cd, Sb, Hg, Pb, Bi and La were studied in the surface sediments and three GEMAX cores. The vertical distribution revealed the temporal change in the metal accumulation. The spike in the Cs concentration, indicating the Chernobyl disaster in 1986, enabled the estimation of the accumulation of studied elements over time. The horizontal distribution maps based on the concentrations in the surface sediments enabled the discovery of the sites with most intense metal accumulation. Correlation coefficients showed the effect of carbon and sediment grain size in the distribution of metals. The comparison of the metal concentrations to the natural background levels and the Canadian sediment quality guidelines (SQGs) enabled the estimation of the degree of contamination of the area. The metal concentrations have declined during the last decades in the north eastern Gulf of Finland, indicating lower contamination input towards present day. However, in the oxidized Ravijoki core, the decline was not that obvious, probably due to metal scavenging by Fe and Mn oxides and bioturbation. The regional metal distribution was strongly affected by the grain size and carbon – most metals showed high positive correlations with carbon and finer sediment fraction. Mn was an exception, showing negative correlations with both carbon and clay, probably due to the Mn reduction at sites with high organic matter accumulation. The regional distribution pattern suggested main Cd pollution arriving from the eastern part of the Gulf. The distribution of Hg, Mo, Cu and Zn also suggested a possible source in the east. High concentrations of Hg, Pb and Cu were discovered in the outlets of river Kymi. According to the Canadian SQGs, the sediments in the north-eastern Gulf of Finland were contaminated. The situation is especially severe in the case of Zn – the higher reference value PEL, above which adverse biological effects frequently occur, was exceeded even in the oxidized Ravijoki sediments. The highest concentrations of the elements with defined SQGs (Cd, Cr, Zn, Cu, Hg, Pb and As) exceeded the lower reference values in the surface sediments, indicating that all these metals could, at least locally, pose a severe threat to benthic species.
  • Railo, Sohvi (2023)
    Ongoing climate change alters Northern marine ecosystems, where annual sea-ice cover has a significant role. Changes caused by climate change, such as sea surface temperature and sea-ice season, affect the composition of the community of primary producers. Primary producers have an important role in the ecosystems and biological and geological cycle, and a slight change in their community can have a significant impact on the marine system. Past environments provide important information on the effects of future changes in the environment and climate as well as tools to control them. Diatoms are commonly used in micropaleontology and paleoecology as an indicator for past environmental conditions and are therefore important proxies for paleoenvironments and climates. To better understand the past and future changes in the environment and climate, it is important to study not only microfossils in the sediments but also the relationship of modern diatoms to environmental factors. In the Baltic Sea, seasons strongly regulate the environmental conditions, which are reflected in the diatom community. Different seasons are represented by diatoms adapted to different conditions, which could lead to misrepresentation of environmental conditions if seasonal patterns are not recognized. In this master’s thesis, modern diatom seasonal succession is studied, as well as the role of environmental factors on diatom species over one year period. A sediment trap was used to monitor seasonal diatom succession and sediment vertical flux in Tvärminne Storfjärden, Gulf of Finland between 2012–2013. New information was discovered on the ecology and succession of common diatom species in the Baltic Sea. Data shows a clear succession according to the season as diatom community evolved to represent winter and early spring community, late spring community and autumn community. In winter the diatom community consists mainly of sea-ice species such as Pauliella taeniata and cold-water species Thalassiosira levanderi. The role of Pauliella taeniata was smaller than expected, possibly due to long-term decreasing trend associated with changing environment. Other central species were sea-ice related Stauroneis radissonii and a species belonging to Chaetoceros group. Sea-ice species formed a bloom around sea-ice melt and again during the spring bloom. In contrast to sea-ice species Thalassiosira levanderi formed a bloom only in the early spring, although it was present throughout the year. The bloom was probably initiated by optimal environmental conditions and lack of competition. Dominant species during spring bloom were common spring species in the Baltic Sea Skeletonema marinoi and Diatoma moniliformis. The latter occurs in benthic and planktic environments that were discovered blooming in planktic on spring blooms in May of 2013. In summer diatoms were relatively scarce, but a group of small centric species (including Cyclotella Choctawhatcheeana, Cyclotella atomus, Minidiscus proschkinae) formed massive autumn blooms as turbidity and nutrient concentrations increased in September and August.