Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "Ultrasonic Cleaning"

Sort by: Order: Results:

  • Peterzéns, Kasper (2023)
    Power ultrasound increases production efficiency in the industry, and therefore reduces emissions. This advantage arises from the ability of ultrasound to mitigate fouling. Ultrasound solution requires clamping the transducers onto the external wall of the production equipment, typically made of steel. A challenge then arises, since mechanical loading by the wall hampers the natural resonating of the ultrasonic transducer and therefore reduces power transmission. To overcome this limitation, airgap contact coupling (ACC) is proposed. ACC features an airgap to reduce the mechanical loading and two protruding elements for mechanical contacting and sound delivery. Finite-element method (FEM) simulations are employed to evaluate the physical mechanisms behind ACC. For the comparison, direct traditional contact coupling (TCC) is evaluated. To assess the acoustic power delivery by ACC and TCC, calorimetric measurements were used. A water-filled stainless-steel pipe with a 2 mm thick wall and 136 mm outer diameter was sonicated. To prevent heat transmission to ambient air, it was covered by isolating foam. ACC and TCC were sonicated at their coupled resonance frequencies, respectively at 19.2 kHz and 28.1 kHz. A power delivery ratio was determined by the calorimetric power against the sonication power. ACC resulted in a power delivery ratio of 27.4±6.3 % whereas that for TCC was 6.1±0.6 %. ACC was thereby shown to transmit 6 dB more acoustic power than TCC. In conclusion, a novel contact coupling method is proposed for industrial metal-walled equipment. The proposed new approach enhances the utility of power ultrasound for online cleaning and prevention.