Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "calibration"

Sort by: Order: Results:

  • Heiskanen, Ilmari (2021)
    Interest towards indoor air quality has increased for several decades from human health perspective. In order to evaluate the quality of indoor air in terms of volatile organic compound (VOC) levels, robust analytical procedures and techniques must be used for indoor air VOC measurements. Since indoor building materials are the greatest source of indoor VOC emissions, same kind of procedures must be used for analysis of emission rates from building materials and their surfaces. Theory part of this thesis reviews background of VOCs and human health, legislation and guideline values, common building materials with emissions and used sampling techniques/approaches for indoor air sampling and surface material emission rate sampling & analysis. Discussed sampling techniques include, for example, material emission test chambers, field and laboratory test emission cells, solid phase microextraction (SPME) fibre applications and Radiello passive samplers. Also new innovative approaches are discussed. Used common analysis instruments are Gas Chromatography (GC) with Mass Spectrometer (MS) or Flame Ionization Detector (FID) for VOCs and High-Performance Liquid Chromatography-Ultraviolet/Visible light detector (HPLC-UV/VIS) for carbonyl VOCs (e.g. formaldehyde) after suitable derivatization. Analytical procedures remain highly ISO 16000 standard series orientated even in recent studies. In addition, potential usage of new modern miniaturized sample collection devices SPME Arrow and In-tube extraction (ITEX) used in experimental part of this thesis are discussed as an addition to indoor air and VOC emission studies. The aim of the experimental part of this thesis was to develop calibrations for selected organic nitrogen compounds with SPME Arrow and ITEX sampling techniques and test the calibration with indoor and outdoor samples. A calibration was successfully carried out with SPME Arrow (MCM-41 sorbent), ITEX (MCM-TP sorbent) and ITEX (Polyacrylonitrile (PAN) 10 % sorbent) with permeation system combined with GC-MS for the following selected organic nitrogen compounds: triethylamine, pyridine, isobutyl amine, allylamine, trimethylamine, ethylenediamine, dipropyl amine, hexylamine, 1,3-diaminopropane, 1-methyl-imidazole, N, N-dimethylformamide, 1,2-diaminocyclohexane, 1-nitropropane and formamide. The overall quality of the calibration curves was evaluated, and the calibrations were compared in terms of linear range, relative standard deviation (RSD) % for accepted calibration levels and obtained Limits of Detection (LOD) values. Also, ways to improve the calibrations were discussed. The calibration curves were tested with real indoor and outdoor samples and quantitative, as well as semi-quantitative, results were obtained.
  • Lintuluoto, Adelina Eleonora (2021)
    At the Compact Muon Solenoid (CMS) experiment at CERN (European Organization for Nuclear Research), the building blocks of the Universe are investigated by analysing the observed final-state particles resulting from high-energy proton-proton collisions. However, direct detection of final-state quarks and gluons is not possible due to a phenomenon known as colour confinement. Instead, event properties with a close correspondence with their distributions are studied. These event properties are known as jets. Jets are central to particle physics analysis and our understanding of them, and hence of our Universe, is dependent upon our ability to accurately measure their energy. Unfortunately, current detector technology is imprecise, necessitating downstream correction of measurement discrepancies. To achieve this, the CMS experiment employs a sequential multi-step jet calibration process. The process is performed several times per year, and more often during periods of data collection. Automating the jet calibration would increase the efficiency of the CMS experiment. By automating the code execution, the workflow could be performed independently of the analyst. This in turn, would speed up the analysis and reduce analyst workload. In addition, automation facilitates higher levels of reproducibility. In this thesis, a novel method for automating the derivation of jet energy corrections from simulation is presented. To achieve automation, the methodology utilises declarative programming. The analyst is simply required to express what should be executed, and no longer needs to determine how to execute it. To successfully automate the computation of jet energy corrections, it is necessary to capture detailed information concerning both the computational steps and the computational environment. The former is achieved with a computational workflow, and the latter using container technology. This allows a portable and scalable workflow to be achieved, which is easy to maintain and compare to previous runs. The results of this thesis strongly suggest that capturing complex experimental particle physics analyses with declarative workflow languages is both achievable and advantageous. The productivity of the analyst was improved, and reproducibility facilitated. However, the method is not without its challenges. Declarative programming requires the analyst to think differently about the problem at hand. As a result there are some sociological challenges to methodological uptake. However, once the extensive benefits are understood, we anticipate widespread adoption of this approach.