Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "dark matter"

Sort by: Order: Results:

  • Al-Adulrazzaq, Aula (2023)
    Dark matter direct detection experiments still have found no evidence of the dark matter WIMPs. The search has therefore been expanded for lighter dark matter candidates. Light dark matter is nearly invisible to current detectors through the elastic nuclear recoils. This thesis is meant to provide understanding on the inelastic atomic scatterings, which are one good way to detect dark matter particles with mχ ∼ GeV. In this thesis we consider spin-independent scatterings. Inelastic scatterings are based on the fact that in an atom, electrons do not follow the motion of the recoil nucleus immediately, but instead it takes time. This results in a small probability of observable ionization or excitation of the atom. This is known as the Migdal effect. We will first study the theoretical framework of dark matter-nucleus scatterings, showing how to get the event rate and how it is factorized into the astrophysical, the particle physics and the target response part. Then we will move to the inelastic processes, Migdal and Bremsstrahlung effects, deriving their event rates. In the first, we try to detect ionized electrons. The latter one, the Bremsstrahlung, is a similar process to the Migdal, but there we try to detect photons emitted from the de-excitations of atoms excited in the inelastic recoils. We will also look into the Migdal in semiconductors. Because of the smaller gap for electron excitations in crystals, we find that the rate for the Migdal effect is much higher in semiconductors than in atomic targets, thus allowing the search for even lighter dark matter particles. The rate can be expressed in terms of the energy loss function of the target material.
  • Berlea, Vlad Dumitru (2020)
    The nature of dark matter (DM) is one of the outstanding problems of modern physics. The existence of dark matter implies physics beyond the Standard Model (SM), as the SM doesn’t contain any viable DM candidates. Dark matter manifests itself through various cosmological and astrophysical observations of the rotational speeds of galaxies, structure formation, measurements of the Cosmic Microwave Background (CMB) and gravitational lensing of galaxy clusters. An attractive explanation of the observed dark matter density is provided by the WIMP (Weakly Interacting Massive Particle) paradigm. In the following thesis I explore this idea within the well motivated Higgs portal framework. In particular, I explore three options for dark matter composition: a scalar field and U(1) and SU(2) hidden gauge Fields. I find that the WIMP paradigm is still consistent with the data. Even though it finds itself under pressure from direct detection experiments, it is not yet in crisis. Simple and well motivated WIMP models can fit the observed DM density without violating the collider and direct DM detection constraints.
  • Stendahl, Alex (2020)
    The Standard model of particle physics has been very successful in describing particles and their interactions. In 2012 the last missing piece, the Higgs boson, was discovered at the Large Hadron Collider. However even for all its success the Standard model fails to explain some phenomena of nature. Two of these unexplained phenomena are dark matter and the metastability of the electroweak vacuum. In this thesis we study one of the simplest extensions of the Standard model; the complex singlet scalar extension. In this framework the CP-even component of the singlet mixes with the Standard model like Higgs boson through the portal operator to form new mass eigenstates. The CP-odd component is a pseudo-Goldstone boson which could be a viable dark matter candidate. We analyse parameter space of the model with respect to constraints from particle physics experiments and cosmological observations. The time evolution of dark matter number density is derived to study the process of dark matter freeze-out. The relic density of the Dark Matter candidate is then calculated with the micrOmegas tool. These calculations are then compared to the measured values of dark matter relic density. Moreover, the electroweak vacuum can be stabilised due the contribution of the singlet scalar to the Standard Model Higgs potential. We derive the β-functions of the couplings in order to study the renormalisation group evolution of the parameters of the model. With the contribution of the portal coupling to the β-function of the Higgs coupling we are able to stabilise the electroweak vacuum up to the Planck scale. The two-loop β-functions are calculated using the SARAH tool.
  • Siilin, Kasper (2022)
    I use hydrodynamic cosmological N-body simulations to study the effect that a secondary period of inflation, driven by a spectator field, would have on the Local Group substructures. Simulations of the Local Group have been widely adopted for studying the nonlinear structure formation on small scales. This is essentially because detailed observations of faint dwarf galaxies are mostly limited to within the Local Group and its immediate surroundings. In particular, the ∼ 100 dwarf galaxies, discovered out to a radius of 3 Mpc from the Sun, constitute a sample that has the potential to discriminate between different cosmological models on small scales, when compared to simulations. The two-period inflaton-curvaton inflation model is one such example, since it gives rise to a small-scale cut-off in the ΛCDM primordial power spectrum, compared to the power spectrum of the ΛCDM model with single field power-law inflation. I investigate the substructures that form in a simulated analogue of the Local Group, with initial conditions that incorporate such a modified power spectrum. The most striking deviation, from the standard power-law inflation, is the reduction of the total number of subhalos, with v_max > 10 km/s, by a factor of ∼ 10 for isolated subhalos and by a factor of ∼ 6 for satellites. However, the reduction is mostly in the number of non-star-forming subhalos, and the studied model thus remains a viable candidate, taking into account the uncertainty in the Local Group total mass estimate. The formation of the first galaxies is also delayed, and the central densities of galaxies with v_max < 50 km/s are lowered: their circular velocities at 1 kpc from the centre are decreased and the radii of maximum circular velocity are increased. As for the stellar mass-metallicity and the stellar mass-halo mass relations, or the selection effects from tidal disruption, I find no significant differences between the models.
  • Lempiäinen, Hanna (2024)
    Particle dark matter (DM) as a solution to the missing mass problem in astronomy has been examined widely and with different models. Among the most studied are weakly interacting massive particles, WIMPs, for short. As dark matter constitutes roughly a quarter of the energy budget of the universe, and due to its vital role in galaxy structures through gravitational interaction, the motivation to uncover the nature and properties of it is strong. In this master’s thesis, a specific particle dark matter model is examined. The model consists of a hidden dark sector added to the Standard Model of Particle Physics (SM). The dark sector introduces a new SU(2) gauge field that acts as a vector dark matter candidate, as well as a complex SU(2) scalar field and interactions between the two. Due to spontaneous symmetry breaking, the dark vector gains a non-zero mass. This relocation of degrees of freedom allows us to write the dark scalar field as having only one real degree of freedom. The dark scalar field also experiences mass mixing with the SM Higgs field, leaving the two propagating scalar mass eigenstates as superpositions of the dark scalar field and the Higgs field. One of these is then identified as the observed Higgs field with a mass of 125 GeV. The four free parameters of the model can be chosen as the masses of the dark matter candidate and the propagating dark scalar field, the angle of the rotation between mass and gauge eigenbasis in the scalar sector and the dark gauge coupling constant. To produce the observed relic density of dark matter, the DM particles need to pair-annihilate with a cross section of order 1.64 × 10^(−9) GeV^(−2). Further constraints are given by collider and direct detection experiments, leaving the parameter space of the model rather constrained. Depending on the values of the other free parameters, a viable mass range of around 100-200 GeV is found for the vector dark matter. The possibility of probing the properties of dark matter through experiments and observations exists. The existence and properties of the dark scalar field could be examined in the Large Hadron Collider. Possible phenomena in the scalar sector of the model, such as phase transitions, could be studied with upcoming gravitational wave detectors, namely the Laser Interferometer Space Antenna. Direct detection experiments provide a way of seeking the dark matter particle itself. With all these possibilities, the future seems interesting.
  • Gibson, Clint (2017)
    Albert Einstein’s General Theory of Relativity radically transformed our understanding of gravitation. Along with this transformative view came several powerful predictions. One of these predictions, the deflection of light in a gravitational field, has proven in recent decades to be crucial to the study of cosmology. In this work we present the foundational theory of gravitational lensing, with a particular focus on the weak regime of lensing. Weak gravitational lensing produced by the large scale structure, called cosmic shear, induces percent level distortions in the images of distant galaxies. Gravitational lensing is of particular interest, since the image distortions are due to all of the matter in the large scale structure, including dark matter. We present the definitions of shear and convergence which are used to quantify the source galaxy image distortions, and discuss some techniques shown in literature which are used for measuring these quantities. This includes presenting the necessary derivations which connect these quantities to two particular classes of results: mass map reconstructions and cosmological parameter constraints. We present some results obtained in recent years: mass map reconstructions obtained using the Canada-France-Hawaii-Telescope Lensing Survey (CFHTLenS) and the Cosmological Evolution Survey (COSMOS), and constraints on the parameters Ω_m and σ_8 (the total matter density parameter and the power spectrum normalization) obtained using CFHTLenS, COSMOS, the Kilo Degree Survey (KiDS), and the Dark Energy Survey (DES). This includes some discussion of apparent tensions with results obtained from Planck (using observations of the cosmic microwave background—a completely different cosmological probe) and of some inconsistencies within the more recent survey results.