Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "data stream mining"

Sort by: Order: Results:

  • Hu, Rosanna Yingying (2024)
    Buildings consume approximately 40% of global energy, hence, understanding and analyzing energy consumption patterns of buildings is essential in bringing desirable insights to building management stakeholders for better decision-making and energy efficiency. Based on a specific use case of a Finnish building management company, this thesis presents the challenge of optimizing energy consumption forecasting and building management by addressing the shortcomings of current individual building-level forecasting approaches and the dynamic nature of building energy use. The research investigates the plausibility of a system of building clusters by studying the representative cluster profiles and dynamic cluster changes. We focus on a dataset comprising hourly energy consumption time series from a variety of Finnish university buildings, employing these as subjects to implement a novel stream clustering approach called ClipStream. ClipStream is an attibute-based stream clustering algorithm to perform continuous online clustering of time series data batches that involves iterative data abstraction, clustering, and change detection phases. This thesis shows that it was plausible to build clusters of buildings based on energy consumption time series. 23 buildings were successfully clustered into 3-5 clusters during each two-week window of the period of investigation. The study’s findings revealed distinct and evolving energy consumption clusters of buildings and characterized 7 predominant cluster profiles, which reflected significant seasonal variations and operational changes over time. Qualitative analyses of the clusters primarily confirmed the noticeable shifts in energy consumption patterns from 2019 to 2022, underscoring the potential of our approach to enhance forecasting efficiency and management effectiveness. These findings could be further extended to establish energy policy, building management practices, and broader sustainability efforts. This suggests that improved energy efficiency can be achieved through the application of machine learning techniques such as cluster analysis.