Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "drift"

Sort by: Order: Results:

  • Uusinoka, Matias (2022)
    Sea-ice dynamics is becoming increasingly essential for the modelling warming climate as the extent and thickness of the ice cover are decreasing along with increasing drift speeds and mechanical weakening. The description of the sea-ice dynamics involves an enormous variety of spatial and temporal scales from meters to the scale of the Arctic Basin and from seconds to years in the geophysical approaches. The complex coupled spatio-temporal scaling laws prohibit the commonly utilized procedures for scale linkage of ice mechanics. Currently, deformation scaling presents one of the principal open questions in sea ice dynamics for which the thesis aims to provide observational analysis. The high-resolution ship-radar imagery gathered during the MOSAiC expedition from October 2019 to September 2020 for which deformation component rates were calculated to generate a seasonal deformation time series. Current research of deformation scaling commonly relies on satellite imagery and drift buoys for which the spatial and temporal resolutions often tend to be considerably lower than for the ship-radar data. The formerly observed dominant deformation mode of shear and the strong spatial correlation of divergence and shear in the Arctic sea ice were confirmed with no signs of seasonal variation. The temporally averaged deformation variations were found to coincide with satellite derived deformation events rather poorly. A strong length scale dependence of deformation was confirmed in the ship-radar data. The spatial scaling law exponents were found to show unexpectedly high values with the behaviour of both spatial and temporal scaling law exponents disobeying the previously observed large-scale characteristics. The seasonal variation of both scaling law exponents were found to exhibit the commonly observed trends following the progression of total deformation rate. The obtained results showed unexpected values and behaviour for the deformation scaling law exponents, which was suggested to be due to the technical faults in the ship-radar data. The faults were often spatially local and lasted merely for a single time step leading to a possible increase in the localization and intermittency of the deformation rates. Additionally, the new ice conditions of the Arctic Ocean and drift route along the Transpolar Drift were suggested as a possible physical source of the unexpected results. Further studies with different methodologies were suggested for the verification and possible the dismissal of the unexpected results.