Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "federated learning"

Sort by: Order: Results:

  • Virtanen, Lasse (2023)
    The multi-armed bandit is a sequential decision making problem where an agent chooses actions and receives rewards. The agent faces an explore-exploit dilemma: it has to balance exploring its options to find the optimal actions, and exploiting choosing the empirically best actions. This problem can also be solved by multiple agents who collaborate in a federated learning setting, where agents do not share their raw data samples. Instead, small updates containing learned parameters are shared. In this setting, the learning process can happen with a central server that coordinates the agents to learn the global model, or in a fully decentralized fashion where agents communicate with each other to collaborate. The distribution of rewards may be heterogeneous, meaning that the agents face distributions with local biases. Depending on the context, this can be handled by cancelling the biases by averaging, or by personalizing the global model to fit each individual agent’s local biases. Another common characteristic of federated multi-armed bandits is preserving privacy. Even though only parameter updates are shared, they can be used to infer the original data. To privatize the data, a method known as differential privacy is applied by adding enough random noise to mask the effect of a single contribution. The newest area of interest for federated multi-armed bandits is security. Collaboration between multiple agents means more opportunities for attacks. Achieving robust security means defending against Byzantine attacks that inject arbitrary data into the learning process to affect the model accuracy in an undesirable way. This thesis is a literature review that explores how the federated multi-armed bandit problem is solved, and how privacy and security for it is achieved.