Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "feedback loop"

Sort by: Order: Results:

  • Mäkelä, Mikko (2020)
    Ultrasonic transducers convert electric energy into mechanical energy at ultrasonic frequencies. High-power ultrasound is widely used in the industry and in laboratories e.g. in cleaning, sonochemistry and welding solutions. To be effective in these cases, a piezoelectric transducer must deliver maximal power to the medium. Most of these systems rely on having the power delivery maximized during long driving sequences where stable performance is critical. Power ultrasonic transducers are typically narrowband, featuring high Q-value, that are finely tuned to a specific resonance frequency. The resonance frequency can vary during driving due to temperature, mechanical loading and nonlinear effects. When the transducers resonance frequency changes, drastic changes in its impedance (resonance to anti-resonance) can lead quickly to damage or failure of the driving electronics or the transducers themselves. In this work we developed a multi-channel high-power ultrasonic system with a software-based resonance frequency tracking and driving frequency control. The implementation features a feedback loop to maximize power delivery during long driving sequences in an ultrasonic cleaning vessel. The achieved total real power increased from 6.5 kW to almost 10 kW in peak with our feedback loop. The feedback loop also protected the electronics and transducers from breaking due to heating and varying impedance.